A W-Shaped Self-Supervised Computational Ghost Imaging Restoration Method for Occluded Targets

We developed a novel method based on self-supervised learning to improve the ghost imaging of occluded objects. In particular, we introduced a W-shaped neural network to preprocess the input image and enhance the overall quality and efficiency of the reconstruction method. We verified the superiorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (13), p.4197
Hauptverfasser: Wang, Yu, Wang, Xiaoqian, Gao, Chao, Yu, Zhuo, Wang, Hong, Zhao, Huan, Yao, Zhihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a novel method based on self-supervised learning to improve the ghost imaging of occluded objects. In particular, we introduced a W-shaped neural network to preprocess the input image and enhance the overall quality and efficiency of the reconstruction method. We verified the superiority of our W-shaped self-supervised computational ghost imaging (WSCGI) method through numerical simulations and experimental validations. Our results underscore the potential of self-supervised learning in advancing ghost imaging.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24134197