2-Oxonanonoidal Antibiotic Actinolactomycin Inhibits Cancer Progression by Suppressing HIF-1α

HIF-1 serves as an important regulator in cell response to hypoxia. Due to its key role in promoting tumor survival and progression under hypoxia, HIF-1 has become a promising target of cancer therapy. Thus far, several HIF-1 inhibitors have been identified, most of which are from synthesized chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2019-05, Vol.8 (5), p.439
Hauptverfasser: Cheng, Jiadong, Hu, Lan, Yang, Zheng, Suo, Caixia, Wang, Yueyang Jack, Gao, Ping, Cui, Chengbin, Sun, Linchong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HIF-1 serves as an important regulator in cell response to hypoxia. Due to its key role in promoting tumor survival and progression under hypoxia, HIF-1 has become a promising target of cancer therapy. Thus far, several HIF-1 inhibitors have been identified, most of which are from synthesized chemical compounds. Here, we report that ALM (Actino actoMycin , a compound extracted from metabolites of , exhibits inhibitory effect on HIF-1α. Mechanistically, we found that ALM inhibited the translation of HIF-1α protein by suppressing mTOR signaling activity. Treatment with ALM induced cell apoptosis and growth inhibition of cancer cells both in vitro and in vivo in a HIF-1 dependent manner. More interestingly, low dose of ALM treatment enhanced the anti-tumor effect of Everolimus, an inhibitor of mTOR, suggesting its potential use in combination therapy of tumors, especially solid tumor patients. Thus, we identified a novel HIF-1α inhibitor from the metabolites of which shows promising anti-cancer potential.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells8050439