Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer

Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-05, Vol.13 (1), p.2903-2903, Article 2903
Hauptverfasser: Yuan, Kai, Li, Zhaoxing, Kuang, Wenbin, Wang, Xiao, Ji, Minghui, Chen, Weijiao, Ding, Jiayu, Li, Jiaxing, Min, Wenjian, Sun, Chengliang, Ye, Xiuquan, Lu, Meiling, Wang, Liping, Ge, Haixia, Jiang, Yuzhang, Hao, Haiping, Xiao, Yibei, Yang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target, we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69 displays favorable safety properties with a maximal tolerable dose of more than 10,000 mg/kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly selective DYRK2 inhibitor with favorable druggability for the treatment of PCa. The kinase DYRK2 is a known oncogene but its role in prostate cancer is unexplored. Here, the authors identify DYRK2 as a target for prostate cancer with a role in invasion and they discover a specific DYRK2 inhibitor that has good pharmacokinetics and efficacy in vivo.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30581-4