Hydrogen Generation over RuO2 Nanoparticle-Decorated LaNaTaO3 Perovskite Photocatalysts under UV Exposure

The efficacy of LaNaTaO3 perovskites decoration RuO2 at diverse contents for the photocatalytic H2 generation has been explored in this study. The photocatalytic performance of RuO2 co-catalyst onto mesoporous LaNaTaO3 was evaluated for H2 under UV illumination. 3%RuO2/LaNaTaO3 perovskite photocatal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-04, Vol.6 (15), p.10250-10259
Hauptverfasser: Alhaddad, Maha, Ismail, Adel A, Zaki, Zaki I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficacy of LaNaTaO3 perovskites decoration RuO2 at diverse contents for the photocatalytic H2 generation has been explored in this study. The photocatalytic performance of RuO2 co-catalyst onto mesoporous LaNaTaO3 was evaluated for H2 under UV illumination. 3%RuO2/LaNaTaO3 perovskite photocatalyst revealed the highest photocatalytic H2 generation performance, indicating that RuO2 nanoparticles could promote the photocatalytic efficiency of LaNaTaO3 perovskite significantly. The H2 evolution rate of 3%RuO2/LaNaTaO3 perovskite is 11.6 and 1.3 times greater than that of bare LaNaTaO3 perovskite employing either 10% CH3OH or pure H2O, respectively. Interestingly, the photonic efficiency of 3%RuO2/LaNaTaO3 perovskite was enhanced 10 times than LaNaTaO3 perovskite in the presence of aqueous CH3OH solutions as a hole sacrificial agent. The high separation of charge carriers is interpreted by the efficient hole capture using CH3OH, hence leading to greater H2 generation over RuO2/LaNaTaO3 perovskites. This is attributed to an adjustment position between recombination electron–hole pairs and also the reduction of potential conduction alignment as a result of RuO2 incorporation. The suggested mechanisms of RuO2/LaNaTaO3 perovskites for H2 generation employing either CH3OH or pure H2O were discussed. The photocatalytic performances of the perovskite photocatalyst were elucidated according to the PL intensity and the photocurrent response investigations.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c00584