Distance Measurement of a Frequency-Shifted Sub-Terahertz Wave Source

In this paper, we report the development of a frequency-shifted (FS) terahertz (THz) wave source for the non-destructive inspection of buildings. Currently, terahertz-time domain spectroscopy (THz-TDS) is the mainstream method for non-destructive inspection using THz waves. However, THz-TDS is limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2022-03, Vol.9 (3), p.128
Hauptverfasser: Honjo, Minoru, Suizu, Koji, Yamaguchi, Masaki, Ikari, Tomofumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report the development of a frequency-shifted (FS) terahertz (THz) wave source for the non-destructive inspection of buildings. Currently, terahertz-time domain spectroscopy (THz-TDS) is the mainstream method for non-destructive inspection using THz waves. However, THz-TDS is limited by its measurement range and difficulties encountered when there is a strong frequency dependence in the absorption characteristics and refractive index of the measurement target. To address these issues, we developed a novel non-destructive approach for inspection applications using frequency-shifted THz waves. Our system uses a frequency-shifted feedback (FSF) laser as the pump light source to generate FS-THz waves; this allowed us to obtain precise distance measurements of objects over a broad range of distances. We tested a prototype FS-THz system and confirmed successful measurement of spatial distances inside a building material.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics9030128