Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment

Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU. Here we developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC public health 2024-05, Vol.24 (1), p.1385-9, Article 1385
Hauptverfasser: Rodrigues, Moreno M S, Barreto-Duarte, Beatriz, Vinhaes, Caian L, Araújo-Pereira, Mariana, Fukutani, Eduardo R, Bergamaschi, Keityane Bone, Kristki, Afrânio, Cordeiro-Santos, Marcelo, Rolla, Valeria C, Sterling, Timothy R, Queiroz, Artur T L, Andrade, Bruno B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU. Here we developed a score to predict the risk of LTFU during anti-TB treatment (ATT) in a nationwide cohort of cases using clinical data reported to the Brazilian Notifiable Disease Information System (SINAN). We performed a retrospective study of all TB cases reported to SINAN between 2015 and 2022; excluding children (
ISSN:1471-2458
1471-2458
DOI:10.1186/s12889-024-18815-0