A Numerical Prediction of the Resistance of Bulk Carriers in Brash Ice Channels

Ship resistance increases significantly when navigating a brash ice channel. In this study, the numerical method is applied to predict the full-scale ship resistance of bulk carriers in brash ice channels. The viscous flow computational fluid dynamics (CFD) solver was coupled with the discrete eleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2023-07, Vol.11 (7), p.1425
Hauptverfasser: Sun, Haisu, Ni, Xuan, Zhang, Yuxin, Chen, Kang, Ni, Baoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ship resistance increases significantly when navigating a brash ice channel. In this study, the numerical method is applied to predict the full-scale ship resistance of bulk carriers in brash ice channels. The viscous flow computational fluid dynamics (CFD) solver was coupled with the discrete element method (DEM) to establish the brash ice model. The Euler multiphase flow’s volume of fluid (VOF) model was applied to simulate the interaction between the ship and water. The ship–brash ice interaction was simulated. Predictions of ships’ total resistance based on the numerical method and the Finnish Swedish ice class rules (FSICR) method were compared with the experimental results carried out in Hamburg Ship Model Basin (HSVA) ice tank. The numerical resistance shows a good agreement with the HSVA experiment reports and a better performance than the FSICR method. The present study shows that the numerical method could provide reasonable and practical ice resistance predictions for engineering applications.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse11071425