MHD free convection with Joule heating and entropy generation inside an H-shaped hollow structure

In this research, a free convective flow of water inside an H-shaped hollow structure which is subjected to the existence of an exterior magnetic field and Joule heating is computationally investigated. The structure's right and left upright surfaces are maintained at invariant ambient thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-04, Vol.10 (8), p.e29380-e29380, Article e29380
Hauptverfasser: Islam, Md. Hasibul, Jamy, Riyan Hashem, Shuvo, Md. Shahneoug, Saha, Sumon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, a free convective flow of water inside an H-shaped hollow structure which is subjected to the existence of an exterior magnetic field and Joule heating is computationally investigated. The structure's right and left upright surfaces are maintained at invariant ambient thermal condition, while the top and bottom-most surfaces of the structure are in adiabatic condition. The rest of the inner walls are heated isothermally. Computational analysis is carried out for different configurations of the chamber by solving Navier-Stokes and heat energy equations via the finite element approach. Parametric computations are conducted by varying Hartmann numbers (0 ≤ Ha ≤ 20), Rayleigh numbers (103 ≤ Ra ≤ 106), width of the vertical sections (0.2 ≤ d/L ≤ 0.4, where L denotes the structure's reference dimension), and thickness of the horizontal middle section (0.2 ≤ t/L ≤ 0.4). To find out the impact of the governing parameters on thermal performance for different configurations, the mean Nusselt number along the hot walls, mean temperature of fluid, overall entropy generation, and thermal performance criterion are assessed. In addition, the variations in fluid motion and thermal patterns are reported in terms of streamlines, isotherms, and heatlines. With a larger mean Nusselt number and smaller thermal performance criterion, better heat transmission performance is found for thicker horizontal middle section and wider vertical sections. The maximum reduction in thermal performance criterion is found to be 87.8 % for increasing the width of the vertical sections. However, in the cases of Ha and d/L, there is an interesting transition in Nusselt number noticed for different Rayleigh numbers. [Display omitted] •Two-dimensional H-shaped hollow structure with magnetic field along with Joule heating is studied.•Thermal performance varies with the change of structure's dimensions and Rayleigh numbers.•Changing middle section height and vertical section width has a great impact on Nu, TPC and mean fluid temperature.•There is a transitional behavior in TPC after a threshold value of Rayleigh number for varying Hartmann number.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e29380