Neuroimaging and cognitive correlates of retinal Optical Coherence Tomography (OCT) measures at late middle age in a twin sample

Sharing in embryology and function between the eye and brain has led to interest in whether assessments of the eye reflect brain changes seen in neurodegeneration. We aimed to examine the associations between measures of retinal layer thickness using optical coherence tomography (OCT) and multimodal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-06, Vol.12 (1), p.9562-9562, Article 9562
Hauptverfasser: Moran, Chris, Xu, Zheng Yang, Mehta, Hemal, Gillies, Mark, Karayiannis, Chris, Beare, Richard, Chen, Christine, Srikanth, Velandai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sharing in embryology and function between the eye and brain has led to interest in whether assessments of the eye reflect brain changes seen in neurodegeneration. We aimed to examine the associations between measures of retinal layer thickness using optical coherence tomography (OCT) and multimodal measures of brain structure and function. Using a convenient sample of twins discordant for type 2 diabetes, we performed cognitive testing, structural brain MRI (tissue volumetry), diffusion tensor imaging (white matter microstructure), and arterial spin labelling (cerebral blood flow). OCT images were recorded and retinal thickness maps generated. We used mixed level modelling to examine the relationship between retinal layer thicknesses and brain measures. We enrolled 35 people (18 pairs, mean age 63.8 years, 63% female). Ganglion cell layer thickness was positively associated with memory, speed, gray matter volume, and altered mean diffusivity. Ganglion cell layer thickness was strongly positively associated with regional cerebral blood flow. We found only a limited number of associations between other retinal layer thickness and measures of brain structure or function. Ganglion cell layer thickness showed consistent associations with a range of brain measures suggesting it may have utility as a marker for future dementia risk.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-13662-8