Ag-Doped MoSe2/ZnO Heterojunctions: A Highly Responsive Gas-Sensitive Material for Selective Detection of NO Based on DFT Study

In this work, the adsorption and sensing behavior of Ag-doped MoSe2/ZnO heterojunctions for H2, CH4, CO2, NO, CO, and C2H4 have been studied based on density functional theory (DFT). In gas adsorption analysis, the adsorption energy, adsorption distance, transfer charge, total electron density, dens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-09, Vol.13 (18), p.2510
Hauptverfasser: He, Tao, Liu, Hongcheng, Zhang, Jing, Yang, Yuepeng, Jiang, Yuxiao, Zhang, Ying, Feng, Jiaqi, Hu, Kelin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the adsorption and sensing behavior of Ag-doped MoSe2/ZnO heterojunctions for H2, CH4, CO2, NO, CO, and C2H4 have been studied based on density functional theory (DFT). In gas adsorption analysis, the adsorption energy, adsorption distance, transfer charge, total electron density, density of states (DOS), energy band structure, frontier molecular orbital, and work function (WF) of each gas has been calculated. Furthermore, the reusability and stability of the Ag-doped MoSe2/ZnO heterojunctions have also been studied. The results showed that Ag-doped MoSe2/ZnO heterojunctions have great potential to be a candidate of highly selective and responsive gas sensors for NO detection with excellent reusability and stability.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13182510