Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice
The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we use...
Gespeichert in:
Veröffentlicht in: | Journal of lipid research 2002-02, Vol.43 (2), p.205-214 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we used HPLC methods to analyze serum and aortic GSL levels in apoE-/- and C57BL/6J control mice. The concentrations of glucosyl ceramide (GlcCer), lactosyl ceramide (LacCer), GalNAcbeta1-4Galbeta1-4Glc-Cer (GA2), and ceramide trihexoside (CTH) were increased by approximately 7-fold in the apoE-/- mouse serum compared with controls. The major serum ganglioside, N-glycolyl GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (N-glycolyl GM2), was increased in concentration by approximately 3-fold. A redistribution of GSLs from HDL to VLDL populations was also observed in the apoE-/- mice. These changes were accompanied by an increase in the levels of GSLs in the aortic sinus and arch of the apoE-/- mice. The spectrum of gangliosides present in the aortic tissues was more complex than that found in the lipoproteins, with the latter represented almost entirely by N-glycolyl GM2 and the former comprised of NeuNAcalpha2-3Galbeta1-4Glc-Cer (GM3), GM2, N-glycolyl GM2, GM1, GD3, and GD1a. In conclusion, neutral GSL and ganglioside levels were increased in the serum and aortae of apoE-/- mice compared with controls, and this was associated with a preferential redistribution of GSL to the proatherogenic lipoprotein populations. The apoE-/- mouse therefore represents a useful model to study the potential role of GSL metabolism in atherogenesis. |
---|---|
ISSN: | 0022-2275 |
DOI: | 10.1016/s0022-2275(20)30162-0 |