Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry

Hydrate plugging is the major challenge in the flow assurance of deep-sea pipelines. For water-in-oil emulsions, this risk could be significantly reduced with the addition of anti-agglomerants (AAs). Hydrates often form from water-in-oil emulsions and the measurement of emulsion and slurry viscosity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2017-08, Vol.10 (8), p.1105
Hauptverfasser: Lv, Yining, Guan, Yintang, Guo, Shudi, Ma, Qinglan, Gong, Jing, Chen, Guangjin, Sun, Changyu, Guo, Kai, Yang, Lanying, Shi, Bohui, Qin, Wei, Qiao, Yubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrate plugging is the major challenge in the flow assurance of deep-sea pipelines. For water-in-oil emulsions, this risk could be significantly reduced with the addition of anti-agglomerants (AAs). Hydrates often form from water-in-oil emulsions and the measurement of emulsion and slurry viscosity constitutes the basis for the application of hydrate slurry flow technology. In this work, using a novel high-pressure viscometer, emulsion and slurry viscosity with different AAs for water content ranging from 5% to 30% was obtained. The viscosity-temperature curves of emulsions were determined and correlated. The variation of system viscosity during hydrate formation from water-in-oil emulsions was examined, the sensitivity of stable slurry viscosity to water cut and the effects of temperature on annealed slurry viscosity were investigated. The results indicated that the variation of viscosity during hydrate formation relies on the conversion ratio. It also implied that the sensitivity of slurry viscosity to change in its water cut or temperature was reduced with AA addition.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10081105