Carbon materials for electrically conductive concrete

In recent decades, the direction of building materials science related to the creation of Smart Concretes has been rapidly developing. Smart Concretes, in addition to the functions of a structural material, also perform other functions that are related to their new properties. Among the large number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2024-01, Vol.534, p.01019
Hauptverfasser: Savytskyi Mykola, Sukhyy Kostyantyn, Savytskyi Oleksandr, Babenko Maryna, Shevchenko Tetyana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent decades, the direction of building materials science related to the creation of Smart Concretes has been rapidly developing. Smart Concretes, in addition to the functions of a structural material, also perform other functions that are related to their new properties. Among the large number of Smart Concretes, it is necessary to highlight Electrically Conductive Smart Concrete. This type of concrete is obtained by adding conductive fillers to the concrete mixture. Among them, carbon materials are the most promising in terms of their properties. Despite the large number of conducted studies of conductive fillers and conductive concrete, there is still no generalization and systematization of them. In addition, there are no standards for testing the conductive properties of both fillers and concretes. Therefore, the authors aimed to systematize data on Electrically Conductive Smart Concrete, as well as electrically conductive carbon fillers. A method for testing the electrical conductivity of Carbon Nanomaterials (CNMs) as fillers for Electrically Conductive Concrete is proposed. Approbation of the proposed method was carried out by determining the electrotechnical indicators of carbon fillers, such as coke breeze and carbon black.
ISSN:2267-1242
DOI:10.1051/e3sconf/202453401019