A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites

The adverse effects of UV (ultraviolet) radiation on polymeric materials and organic constituents can damage the molecular structure of human skin and polymeric materials, resulting in their degradation. Therefore, additives or reagents for UV-shielding must be used in related applications, includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-03, Vol.16 (5), p.2231
Hauptverfasser: Kim, Tae Hoon, Park, Seung Hyeon, Lee, Seoku, Bharadwaj, A.V.S.L. Sai, Lee, Yang Soo, Yoo, Chang Geun, Kim, Tae Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adverse effects of UV (ultraviolet) radiation on polymeric materials and organic constituents can damage the molecular structure of human skin and polymeric materials, resulting in their degradation. Therefore, additives or reagents for UV-shielding must be used in related applications, including polymer compounds and skin cosmetics. Bio-based polymers have shown great potential as alternatives to conventional metallic and organic materials (e.g., TiO2 and ZnO) in various applications; therefore, natural products have gained attention as a potential resource to overcome UV-induced health and environmental problems. In particular, biomass-derived materials such as lignin, fiber, and silica have been investigated as UV-shielding materials owing to their biocompatibility, biodegradability, and low carbon emissions. In this review, the UV-shielding effect and potential of various biomass-derived materials, such as silica, nanocellulose, and fibers, are reviewed. Among them, lignin is considered a promising UV-shielding material because of the presence of chromophores and functional groups capable of absorbing UV radiation of all ranges.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16052231