Glucose-based biofuel cells and their applications in medical implants: A review
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers be...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-07, Vol.10 (13), p.e33615, Article e33615 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5–10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e33615 |