Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance

Enhancing the removal of aggregate-prone toxic proteins is a rational therapeutic strategy for a number of neurodegenerative diseases, especially Huntington’s disease and various spinocerebellar ataxias. Ideally, such approaches should preferentially clear the mutant/misfolded species, while having...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-07, Vol.13 (1), p.4146-19, Article 4146
Hauptverfasser: Wrobel, Lidia, Hill, Sandra M., Djajadikerta, Alvin, Fernandez-Estevez, Marian, Karabiyik, Cansu, Ashkenazi, Avraham, Barratt, Victoria J., Stamatakou, Eleanna, Gunnarsson, Anders, Rasmusson, Timothy, Miele, Eric W., Beaton, Nigel, Bruderer, Roland, Feng, Yuehan, Reiter, Lukas, Castaldi, M. Paola, Jarvis, Rebecca, Tan, Keith, Bürli, Roland W., Rubinsztein, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhancing the removal of aggregate-prone toxic proteins is a rational therapeutic strategy for a number of neurodegenerative diseases, especially Huntington’s disease and various spinocerebellar ataxias. Ideally, such approaches should preferentially clear the mutant/misfolded species, while having minimal impact on the stability of wild-type/normally-folded proteins. Furthermore, activation of both ubiquitin-proteasome and autophagy-lysosome routes may be advantageous, as this would allow effective clearance of both monomeric and oligomeric species, the latter which are inaccessible to the proteasome. Here we find that compounds that activate the D1 ATPase activity of VCP/p97 fulfill these requirements. Such effects are seen with small molecule VCP activators like SMER28, which activate autophagosome biogenesis by enhancing interactions of PI3K complex components to increase PI(3)P production, and also accelerate VCP-dependent proteasomal clearance of such substrates. Thus, this mode of VCP activation may be a very attractive target for many neurodegenerative diseases. Several neurodegenerative diseases are characterized by the aggregation of cytoplasmic proteins. Here, the authors demonstrate that the small molecule SMER28 activates VCP, which enhances both autophagic and proteasomal clearance of aggregate-prone proteins.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-31905-0