Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators

The nonlocal boundary value problem for the parabolic differential equation v ' ( t ) + A ( t ) v ( t ) = f ( t ) ( 0 ≤ t ≤ T ) , v ( 0 ) = v ( λ ) + φ , 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A ( t ) is investigated. The well-posedness of this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-11
Hauptverfasser: Ashyralyev, Allaberen, Hanalyev, Asker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlocal boundary value problem for the parabolic differential equation v ' ( t ) + A ( t ) v ( t ) = f ( t ) ( 0 ≤ t ≤ T ) , v ( 0 ) = v ( λ ) + φ , 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A ( t ) is investigated. The well-posedness of this problem is established in Banach spaces C 0 β , γ ( E α - β ) of all E α - β -valued continuous functions φ ( t ) on [ 0 , T ] satisfying a Hölder condition with a weight ( t + τ ) γ . New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2014/519814