Novel Oxime-Derivatized Synthetic Triterpene Glycosides as Potent Saponin Vaccine Adjuvants

Vaccine adjuvants are key for optimal vaccine efficacy, increasing the immunogenicity of the antigen and potentiating the immune response. Saponin adjuvants such as the carbohydrate-based QS-21 natural product are among the most promising candidates in vaccine formulations, but suffer from inherent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in immunology 2022-05, Vol.13, p.865507-865507
Hauptverfasser: Fuentes, Roberto, Aguinagalde, Leire, Pifferi, Carlo, Plata, Adrián, Sacristán, Nagore, Castellana, Donatello, Anguita, Juan, Fernández-Tejada, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vaccine adjuvants are key for optimal vaccine efficacy, increasing the immunogenicity of the antigen and potentiating the immune response. Saponin adjuvants such as the carbohydrate-based QS-21 natural product are among the most promising candidates in vaccine formulations, but suffer from inherent drawbacks that have hampered their use and approval as stand-alone adjuvants. Despite the recent development of synthetic derivatives with improved properties, their full potential has not yet been reached, allowing the prospect of discovering further optimized saponin variants with higher potency. Herein, we have designed, chemically synthesized, and immunologically evaluated novel oxime-derivatized saponin adjuvants with targeted structural modifications at key triterpene functionalities. The resulting analogues have revealed important findings into saponin structure-activity relationships, including adjuvant mechanistic insights, and have shown superior adjuvant activity in terms of significantly increased antibody response augmentation compared to our previous saponin leads. These newly identified saponin oximes emerge as highly promising synthetic adjuvants for further preclinical development towards potential next generation immunotherapeutics for future vaccine applications.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2022.865507