The intestinal microbiome and Cetobacterium somerae inhibit viral infection through TLR2-type I IFN signaling axis in zebrafish

Evidence has accumulated to demonstrate that intestinal microbiome can inhibit viral infection. However, our knowledge of the signaling pathways and identity of specific commensal microbes that mediate the antiviral response is limited. Zebrafish have emerged as a powerful animal model for study of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiome 2024-11, Vol.12 (1), p.244-16, Article 244
Hauptverfasser: Liang, Hui, Li, Ming, Chen, Jie, Zhou, Wenhao, Xia, Dongmei, Ding, Qianwen, Yang, Yalin, Zhang, Zhen, Ran, Chao, Zhou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence has accumulated to demonstrate that intestinal microbiome can inhibit viral infection. However, our knowledge of the signaling pathways and identity of specific commensal microbes that mediate the antiviral response is limited. Zebrafish have emerged as a powerful animal model for study of vertebrate-microbiota interactions. Here, a rhabdoviral infection model in zebrafish allows us to investigate the modes of action of microbiome-mediated antiviral effect. We observed that oral antibiotics-treated and germ-free zebrafish exhibited greater spring viremia of carp virus (SVCV) infection. Mechanistically, depletion of the intestinal microbiome alters TLR2-Myd88 signaling and blunts neutrophil response and type I interferon (IFN) antiviral innate immunity. Through 16S rRNA sequencing of the intestinal contents from control and antibiotic(s)-treated fish, we identified a single commensal bacterial species, Cetobacterium somerae, that can restore the TLR2- and neutrophil-dependent type I IFN response to restrict SVCV infection in gnotobiotic zebrafish. Furthermore, we found that C. somerae exopolysaccharides (CsEPS) was the effector molecule that engaged TLR2 to mediate the type I IFN-dependent antiviral function. Together, our results suggest a conserved role of intestinal microbiome in regulating type I IFN antiviral response among vertebrates and reveal that the intestinal microbiome inhibits viral infection through a CsEPS-TLR2-type I IFN signaling axis in zebrafish. Video Abstract.
ISSN:2049-2618
2049-2618
DOI:10.1186/s40168-024-01958-y