ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES

AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista FI-UPTC 2024-01, Vol.33 (69), p.1-18
Hauptverfasser: Rodríguez-Calderón, Wilson, Pallares-Muñoz, Myriam-Rocío, Jurado-Cabañes, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 69
container_start_page 1
container_title Revista FI-UPTC
container_volume 33
creator Rodríguez-Calderón, Wilson
Pallares-Muñoz, Myriam-Rocío
Jurado-Cabañes, Carlos
description AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.
doi_str_mv 10.19053/01211129.v33.n69.2024.17855
format Article
fullrecord <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110463836</sourcerecordid><originalsourceid>FETCH-LOGICAL-d166t-3ac3abb42e9d54cf683f05d8a971ef8f1233949bbfdaa478d7d9b2ada5c11daf3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQRhdRsGjfYUFvEzM72fyIN9uYtgtpUrJpwauw6SaQUtuatIJvb0p1bgbmO2cYhpBncGwIHY4vDjAAYKH9jWjvvdBmDnNt8APOb8iIIfctjiy4JaMLaV3QezLu-60zlBdwBByRXryvRRrJdEaXeTYRE5lIVciITnOxiKlIRfKhpHqlgkbZYpnH8zhVcj0ky4EX0Zyu1EVeZGkR00jkSUaVXKwSUcgsHfx3msdqmaUqpmqVT0UUq0dy1-hdX4__-gNZTeMimltJNpORSCwDnneyUG9QV5XL6tBwd9N4ATYON4EOfaiboAGGGLphVTVGa9cPjG_Cimmj-QbA6AYfyNt1r2n1bl-fymPXfurupzzotvyfnfdt1x62uqz7UuTF8BrwHY8DDvrTVT92h69z3Z_K7eHc7YeLSwRwXA8D9PAXyNdsxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110463836</pqid></control><display><type>article</type><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</creator><creatorcontrib>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</creatorcontrib><description>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</description><identifier>ISSN: 0121-1129</identifier><identifier>ISSN: 2357-5328</identifier><identifier>EISSN: 2357-5328</identifier><identifier>DOI: 10.19053/01211129.v33.n69.2024.17855</identifier><language>eng</language><publisher>Tunja: Universidad Pedagogica y Tecnologica de Colombia</publisher><subject>confiabilidad estructural ; Cost analysis ; design of experiments ; diseño de experimentos ; Dynamic loads ; Elastic analysis ; Elastic limit ; Elastic properties ; elementos finitos ; Extreme values ; finite element ; Finite element method ; Hypercubes ; Latin hypercube sampling ; Limit states ; Modulus of elasticity ; Monte Carlo methods ; Monte Carlo simulation ; método de superficie de respuesta ; métodos Monte Carlo ; probabilistic sensitivities ; Probability theory ; Random variables ; response surface method ; sensibilidades probabilísticas ; Statistical analysis ; Structural reliability</subject><ispartof>Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-18</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,870,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez-Calderón, Wilson</creatorcontrib><creatorcontrib>Pallares-Muñoz, Myriam-Rocío</creatorcontrib><creatorcontrib>Jurado-Cabañes, Carlos</creatorcontrib><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><title>Revista FI-UPTC</title><description>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</description><subject>confiabilidad estructural</subject><subject>Cost analysis</subject><subject>design of experiments</subject><subject>diseño de experimentos</subject><subject>Dynamic loads</subject><subject>Elastic analysis</subject><subject>Elastic limit</subject><subject>Elastic properties</subject><subject>elementos finitos</subject><subject>Extreme values</subject><subject>finite element</subject><subject>Finite element method</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Limit states</subject><subject>Modulus of elasticity</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>método de superficie de respuesta</subject><subject>métodos Monte Carlo</subject><subject>probabilistic sensitivities</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>response surface method</subject><subject>sensibilidades probabilísticas</subject><subject>Statistical analysis</subject><subject>Structural reliability</subject><issn>0121-1129</issn><issn>2357-5328</issn><issn>2357-5328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>FKZ</sourceid><recordid>eNo1kN1Kw0AQRhdRsGjfYUFvEzM72fyIN9uYtgtpUrJpwauw6SaQUtuatIJvb0p1bgbmO2cYhpBncGwIHY4vDjAAYKH9jWjvvdBmDnNt8APOb8iIIfctjiy4JaMLaV3QezLu-60zlBdwBByRXryvRRrJdEaXeTYRE5lIVciITnOxiKlIRfKhpHqlgkbZYpnH8zhVcj0ky4EX0Zyu1EVeZGkR00jkSUaVXKwSUcgsHfx3msdqmaUqpmqVT0UUq0dy1-hdX4__-gNZTeMimltJNpORSCwDnneyUG9QV5XL6tBwd9N4ATYON4EOfaiboAGGGLphVTVGa9cPjG_Cimmj-QbA6AYfyNt1r2n1bl-fymPXfurupzzotvyfnfdt1x62uqz7UuTF8BrwHY8DDvrTVT92h69z3Z_K7eHc7YeLSwRwXA8D9PAXyNdsxg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rodríguez-Calderón, Wilson</creator><creator>Pallares-Muñoz, Myriam-Rocío</creator><creator>Jurado-Cabañes, Carlos</creator><general>Universidad Pedagogica y Tecnologica de Colombia</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20240101</creationdate><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><author>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d166t-3ac3abb42e9d54cf683f05d8a971ef8f1233949bbfdaa478d7d9b2ada5c11daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>confiabilidad estructural</topic><topic>Cost analysis</topic><topic>design of experiments</topic><topic>diseño de experimentos</topic><topic>Dynamic loads</topic><topic>Elastic analysis</topic><topic>Elastic limit</topic><topic>Elastic properties</topic><topic>elementos finitos</topic><topic>Extreme values</topic><topic>finite element</topic><topic>Finite element method</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Limit states</topic><topic>Modulus of elasticity</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>método de superficie de respuesta</topic><topic>métodos Monte Carlo</topic><topic>probabilistic sensitivities</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>response surface method</topic><topic>sensibilidades probabilísticas</topic><topic>Statistical analysis</topic><topic>Structural reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Calderón, Wilson</creatorcontrib><creatorcontrib>Pallares-Muñoz, Myriam-Rocío</creatorcontrib><creatorcontrib>Jurado-Cabañes, Carlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Revista FI-UPTC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Calderón, Wilson</au><au>Pallares-Muñoz, Myriam-Rocío</au><au>Jurado-Cabañes, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</atitle><jtitle>Revista FI-UPTC</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><issue>69</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0121-1129</issn><issn>2357-5328</issn><eissn>2357-5328</eissn><abstract>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</abstract><cop>Tunja</cop><pub>Universidad Pedagogica y Tecnologica de Colombia</pub><doi>10.19053/01211129.v33.n69.2024.17855</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0121-1129
ispartof Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-18
issn 0121-1129
2357-5328
2357-5328
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706513
source Dialnet; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects confiabilidad estructural
Cost analysis
design of experiments
diseño de experimentos
Dynamic loads
Elastic analysis
Elastic limit
Elastic properties
elementos finitos
Extreme values
finite element
Finite element method
Hypercubes
Latin hypercube sampling
Limit states
Modulus of elasticity
Monte Carlo methods
Monte Carlo simulation
método de superficie de respuesta
métodos Monte Carlo
probabilistic sensitivities
Probability theory
Random variables
response surface method
sensibilidades probabilísticas
Statistical analysis
Structural reliability
title ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADVANCING%20PROBABILISTIC%20FRAME%20ANALYSIS:%20A%20COMPREHENSIVE%20APPROACH%20USING%20MONTE%20CARLO%20SIMULATION%20AND%20RESPONSE%20SURFACES&rft.jtitle=Revista%20FI-UPTC&rft.au=Rodr%C3%ADguez-Calder%C3%B3n,%20Wilson&rft.date=2024-01-01&rft.volume=33&rft.issue=69&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0121-1129&rft.eissn=2357-5328&rft_id=info:doi/10.19053/01211129.v33.n69.2024.17855&rft_dat=%3Cproquest_dialn%3E3110463836%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110463836&rft_id=info:pmid/&rfr_iscdi=true