ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES
AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displ...
Gespeichert in:
Veröffentlicht in: | Revista FI-UPTC 2024-01, Vol.33 (69), p.1-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 69 |
container_start_page | 1 |
container_title | Revista FI-UPTC |
container_volume | 33 |
creator | Rodríguez-Calderón, Wilson Pallares-Muñoz, Myriam-Rocío Jurado-Cabañes, Carlos |
description | AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted. |
doi_str_mv | 10.19053/01211129.v33.n69.2024.17855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110463836</sourcerecordid><originalsourceid>FETCH-LOGICAL-d166t-3ac3abb42e9d54cf683f05d8a971ef8f1233949bbfdaa478d7d9b2ada5c11daf3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQRhdRsGjfYUFvEzM72fyIN9uYtgtpUrJpwauw6SaQUtuatIJvb0p1bgbmO2cYhpBncGwIHY4vDjAAYKH9jWjvvdBmDnNt8APOb8iIIfctjiy4JaMLaV3QezLu-60zlBdwBByRXryvRRrJdEaXeTYRE5lIVciITnOxiKlIRfKhpHqlgkbZYpnH8zhVcj0ky4EX0Zyu1EVeZGkR00jkSUaVXKwSUcgsHfx3msdqmaUqpmqVT0UUq0dy1-hdX4__-gNZTeMimltJNpORSCwDnneyUG9QV5XL6tBwd9N4ATYON4EOfaiboAGGGLphVTVGa9cPjG_Cimmj-QbA6AYfyNt1r2n1bl-fymPXfurupzzotvyfnfdt1x62uqz7UuTF8BrwHY8DDvrTVT92h69z3Z_K7eHc7YeLSwRwXA8D9PAXyNdsxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110463836</pqid></control><display><type>article</type><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</creator><creatorcontrib>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</creatorcontrib><description>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</description><identifier>ISSN: 0121-1129</identifier><identifier>ISSN: 2357-5328</identifier><identifier>EISSN: 2357-5328</identifier><identifier>DOI: 10.19053/01211129.v33.n69.2024.17855</identifier><language>eng</language><publisher>Tunja: Universidad Pedagogica y Tecnologica de Colombia</publisher><subject>confiabilidad estructural ; Cost analysis ; design of experiments ; diseño de experimentos ; Dynamic loads ; Elastic analysis ; Elastic limit ; Elastic properties ; elementos finitos ; Extreme values ; finite element ; Finite element method ; Hypercubes ; Latin hypercube sampling ; Limit states ; Modulus of elasticity ; Monte Carlo methods ; Monte Carlo simulation ; método de superficie de respuesta ; métodos Monte Carlo ; probabilistic sensitivities ; Probability theory ; Random variables ; response surface method ; sensibilidades probabilísticas ; Statistical analysis ; Structural reliability</subject><ispartof>Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-18</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,870,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez-Calderón, Wilson</creatorcontrib><creatorcontrib>Pallares-Muñoz, Myriam-Rocío</creatorcontrib><creatorcontrib>Jurado-Cabañes, Carlos</creatorcontrib><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><title>Revista FI-UPTC</title><description>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</description><subject>confiabilidad estructural</subject><subject>Cost analysis</subject><subject>design of experiments</subject><subject>diseño de experimentos</subject><subject>Dynamic loads</subject><subject>Elastic analysis</subject><subject>Elastic limit</subject><subject>Elastic properties</subject><subject>elementos finitos</subject><subject>Extreme values</subject><subject>finite element</subject><subject>Finite element method</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Limit states</subject><subject>Modulus of elasticity</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>método de superficie de respuesta</subject><subject>métodos Monte Carlo</subject><subject>probabilistic sensitivities</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>response surface method</subject><subject>sensibilidades probabilísticas</subject><subject>Statistical analysis</subject><subject>Structural reliability</subject><issn>0121-1129</issn><issn>2357-5328</issn><issn>2357-5328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>FKZ</sourceid><recordid>eNo1kN1Kw0AQRhdRsGjfYUFvEzM72fyIN9uYtgtpUrJpwauw6SaQUtuatIJvb0p1bgbmO2cYhpBncGwIHY4vDjAAYKH9jWjvvdBmDnNt8APOb8iIIfctjiy4JaMLaV3QezLu-60zlBdwBByRXryvRRrJdEaXeTYRE5lIVciITnOxiKlIRfKhpHqlgkbZYpnH8zhVcj0ky4EX0Zyu1EVeZGkR00jkSUaVXKwSUcgsHfx3msdqmaUqpmqVT0UUq0dy1-hdX4__-gNZTeMimltJNpORSCwDnneyUG9QV5XL6tBwd9N4ATYON4EOfaiboAGGGLphVTVGa9cPjG_Cimmj-QbA6AYfyNt1r2n1bl-fymPXfurupzzotvyfnfdt1x62uqz7UuTF8BrwHY8DDvrTVT92h69z3Z_K7eHc7YeLSwRwXA8D9PAXyNdsxg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rodríguez-Calderón, Wilson</creator><creator>Pallares-Muñoz, Myriam-Rocío</creator><creator>Jurado-Cabañes, Carlos</creator><general>Universidad Pedagogica y Tecnologica de Colombia</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20240101</creationdate><title>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</title><author>Rodríguez-Calderón, Wilson ; Pallares-Muñoz, Myriam-Rocío ; Jurado-Cabañes, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d166t-3ac3abb42e9d54cf683f05d8a971ef8f1233949bbfdaa478d7d9b2ada5c11daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>confiabilidad estructural</topic><topic>Cost analysis</topic><topic>design of experiments</topic><topic>diseño de experimentos</topic><topic>Dynamic loads</topic><topic>Elastic analysis</topic><topic>Elastic limit</topic><topic>Elastic properties</topic><topic>elementos finitos</topic><topic>Extreme values</topic><topic>finite element</topic><topic>Finite element method</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Limit states</topic><topic>Modulus of elasticity</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>método de superficie de respuesta</topic><topic>métodos Monte Carlo</topic><topic>probabilistic sensitivities</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>response surface method</topic><topic>sensibilidades probabilísticas</topic><topic>Statistical analysis</topic><topic>Structural reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Calderón, Wilson</creatorcontrib><creatorcontrib>Pallares-Muñoz, Myriam-Rocío</creatorcontrib><creatorcontrib>Jurado-Cabañes, Carlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Revista FI-UPTC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Calderón, Wilson</au><au>Pallares-Muñoz, Myriam-Rocío</au><au>Jurado-Cabañes, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES</atitle><jtitle>Revista FI-UPTC</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><issue>69</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0121-1129</issn><issn>2357-5328</issn><eissn>2357-5328</eissn><abstract>AnANSYS-based probabilistic finite element analysis has been created, expanding Haldarand Mahadevan's canonical frame approach. The model is parameterized with eleven random variables, including applied loads, cross-section properties, member lengths, elastic modulus, and limit horizontal displacement. The sensitivity of these variables is analyzed, and the structure's failure probability is evaluated using a limit state function for horizontal displacement. Monte Carlo (MC), Monte Carlo with Latin Hypercube sampling (MCLH), and Linear and Quadratic Response Surface (RSM-LIN and RSM-QUAX) methods analyze structural reliability; RSM methods achieved the lowest computational costs. The results are conclusive and future applications involving nonlinearity, dynamic loading, and other extreme scenarios are predicted.</abstract><cop>Tunja</cop><pub>Universidad Pedagogica y Tecnologica de Colombia</pub><doi>10.19053/01211129.v33.n69.2024.17855</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0121-1129 |
ispartof | Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-18 |
issn | 0121-1129 2357-5328 2357-5328 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706513 |
source | Dialnet; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | confiabilidad estructural Cost analysis design of experiments diseño de experimentos Dynamic loads Elastic analysis Elastic limit Elastic properties elementos finitos Extreme values finite element Finite element method Hypercubes Latin hypercube sampling Limit states Modulus of elasticity Monte Carlo methods Monte Carlo simulation método de superficie de respuesta métodos Monte Carlo probabilistic sensitivities Probability theory Random variables response surface method sensibilidades probabilísticas Statistical analysis Structural reliability |
title | ADVANCING PROBABILISTIC FRAME ANALYSIS: A COMPREHENSIVE APPROACH USING MONTE CARLO SIMULATION AND RESPONSE SURFACES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADVANCING%20PROBABILISTIC%20FRAME%20ANALYSIS:%20A%20COMPREHENSIVE%20APPROACH%20USING%20MONTE%20CARLO%20SIMULATION%20AND%20RESPONSE%20SURFACES&rft.jtitle=Revista%20FI-UPTC&rft.au=Rodr%C3%ADguez-Calder%C3%B3n,%20Wilson&rft.date=2024-01-01&rft.volume=33&rft.issue=69&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0121-1129&rft.eissn=2357-5328&rft_id=info:doi/10.19053/01211129.v33.n69.2024.17855&rft_dat=%3Cproquest_dialn%3E3110463836%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110463836&rft_id=info:pmid/&rfr_iscdi=true |