IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS
The processing of coffee beans after harvest relies heavily on drying, which significantly affects the final product quality. Despite its importance, smallholder farmers in developing countries often resort to using patios and sun exposure for drying, exposing the process to numerous uncontrollable...
Gespeichert in:
Veröffentlicht in: | Revista FI-UPTC 2024-01, Vol.33 (69), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 69 |
container_start_page | 1 |
container_title | Revista FI-UPTC |
container_volume | 33 |
creator | Acosta-Minoli, César Carmona, Paulo-César Mesa-Mazo, Mónica Vargas-Gil, Juan-Diego Velásquez, Juan-Pablo |
description | The processing of coffee beans after harvest relies heavily on drying, which significantly affects the final product quality. Despite its importance, smallholder farmers in developing countries often resort to using patios and sun exposure for drying, exposing the process to numerous uncontrollable variables that may compromise the quality of coffee. Furthermore, coffee farmers typically employ subjective methods to determine moisture content, which can lead to inaccurate measurement results. This study proposes an Internet-of-Things (IoT)-based technology for monitoring and analyzing the coffee drying process. By utilizing a portable set of sensors and data analytics, this technology collects real-time data on various parameters of the drying process, including grain moisture and air temperature and humidity. Once registered in the system, users can access and analyze the data using their cell phones. The study employed a three-phase methodology: first, designing and developing an IoT framework to capture and analyze data related to the coffee drying process; second, implementing the IoT system, including software development for data transmission, processing, and visualization; and third, conducting a case study with a female smallholder coffee farmer association in Génova, Quindío, Colombia, to deploy the technology, evaluate its usability, and analyze its impact on the drying process. The results of the case study show that the proposed technology allows users to visualize trends and patterns in the drying process based on previously entered information. This offers valuable insights into the drying process, enabling farmers to make informed decisions and take appropriate action to improve the quality of their coffee beans. |
doi_str_mv | 10.19053/01211129.v33.n69.2024.17404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110464400</sourcerecordid><originalsourceid>FETCH-LOGICAL-d166t-299cda844645e71b445431dff47db15abcd4dbaab5be7a6ec06e30b5891816423</originalsourceid><addsrcrecordid>eNo1T81qg0AYXEoLDWneYaG9avfbPxV62Zo1EUxs1R5ykjVuwJBqqkmhb19D2rkMDDPDDEJPQFwIiGDPBCgA0MD9ZsxtZeBSQrkLHif8Bk0oE54jGPVv0eTidC7WezQbhj0ZIX3BgE3Qe5wWzqvK9RwXOlyu0yRdbHCUZrhYahymUaQ1nmebeL3Ab1ka6jzHc1UorNYq2eRxjtMI5yuVJDhS2Upn-QO625nDYGd_PEUfkS7CpTM2x6FKnBqkPDk0CLa18TmXXFgPKs4FZ1DvdtyrKxCm2ta8roypRGU9I-2WSMtIJfwAfJCcsil6ufbWjTm09lQe--bT9D9lZ5ryXzu3Td90e1PaoVRZMR4Hj0gBZIw_XuPHvvs62-FU7rtz346LSwZAxlmcEPYLsxZh3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110464400</pqid></control><display><type>article</type><title>IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Acosta-Minoli, César ; Carmona, Paulo-César ; Mesa-Mazo, Mónica ; Vargas-Gil, Juan-Diego ; Velásquez, Juan-Pablo</creator><creatorcontrib>Acosta-Minoli, César ; Carmona, Paulo-César ; Mesa-Mazo, Mónica ; Vargas-Gil, Juan-Diego ; Velásquez, Juan-Pablo</creatorcontrib><description>The processing of coffee beans after harvest relies heavily on drying, which significantly affects the final product quality. Despite its importance, smallholder farmers in developing countries often resort to using patios and sun exposure for drying, exposing the process to numerous uncontrollable variables that may compromise the quality of coffee. Furthermore, coffee farmers typically employ subjective methods to determine moisture content, which can lead to inaccurate measurement results. This study proposes an Internet-of-Things (IoT)-based technology for monitoring and analyzing the coffee drying process. By utilizing a portable set of sensors and data analytics, this technology collects real-time data on various parameters of the drying process, including grain moisture and air temperature and humidity. Once registered in the system, users can access and analyze the data using their cell phones. The study employed a three-phase methodology: first, designing and developing an IoT framework to capture and analyze data related to the coffee drying process; second, implementing the IoT system, including software development for data transmission, processing, and visualization; and third, conducting a case study with a female smallholder coffee farmer association in Génova, Quindío, Colombia, to deploy the technology, evaluate its usability, and analyze its impact on the drying process. The results of the case study show that the proposed technology allows users to visualize trends and patterns in the drying process based on previously entered information. This offers valuable insights into the drying process, enabling farmers to make informed decisions and take appropriate action to improve the quality of their coffee beans.</description><identifier>ISSN: 0121-1129</identifier><identifier>ISSN: 2357-5328</identifier><identifier>EISSN: 2357-5328</identifier><identifier>DOI: 10.19053/01211129.v33.n69.2024.17404</identifier><language>eng</language><publisher>Tunja: Universidad Pedagogica y Tecnologica de Colombia</publisher><subject>200 device ; Air temperature ; análisis de datos ; café ; Case studies ; Coffee ; coffee beans ; Data analysis ; data analytics ; Data transmission ; Developing countries ; dispositivo Dh ; Drying ; drying process ; Exposure ; Impact analysis ; internet de las cosas ; Internet of Things ; IoT ; LDCs ; Moisture content ; monitoreo en tiempo real ; pequeños productores ; proceso de secado ; real ; Real time ; small farmer coffee producers ; Software development ; Technology assessment ; time monitoring</subject><ispartof>Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-12</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,870,27901,27902</link.rule.ids></links><search><creatorcontrib>Acosta-Minoli, César</creatorcontrib><creatorcontrib>Carmona, Paulo-César</creatorcontrib><creatorcontrib>Mesa-Mazo, Mónica</creatorcontrib><creatorcontrib>Vargas-Gil, Juan-Diego</creatorcontrib><creatorcontrib>Velásquez, Juan-Pablo</creatorcontrib><title>IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS</title><title>Revista FI-UPTC</title><description>The processing of coffee beans after harvest relies heavily on drying, which significantly affects the final product quality. Despite its importance, smallholder farmers in developing countries often resort to using patios and sun exposure for drying, exposing the process to numerous uncontrollable variables that may compromise the quality of coffee. Furthermore, coffee farmers typically employ subjective methods to determine moisture content, which can lead to inaccurate measurement results. This study proposes an Internet-of-Things (IoT)-based technology for monitoring and analyzing the coffee drying process. By utilizing a portable set of sensors and data analytics, this technology collects real-time data on various parameters of the drying process, including grain moisture and air temperature and humidity. Once registered in the system, users can access and analyze the data using their cell phones. The study employed a three-phase methodology: first, designing and developing an IoT framework to capture and analyze data related to the coffee drying process; second, implementing the IoT system, including software development for data transmission, processing, and visualization; and third, conducting a case study with a female smallholder coffee farmer association in Génova, Quindío, Colombia, to deploy the technology, evaluate its usability, and analyze its impact on the drying process. The results of the case study show that the proposed technology allows users to visualize trends and patterns in the drying process based on previously entered information. This offers valuable insights into the drying process, enabling farmers to make informed decisions and take appropriate action to improve the quality of their coffee beans.</description><subject>200 device</subject><subject>Air temperature</subject><subject>análisis de datos</subject><subject>café</subject><subject>Case studies</subject><subject>Coffee</subject><subject>coffee beans</subject><subject>Data analysis</subject><subject>data analytics</subject><subject>Data transmission</subject><subject>Developing countries</subject><subject>dispositivo Dh</subject><subject>Drying</subject><subject>drying process</subject><subject>Exposure</subject><subject>Impact analysis</subject><subject>internet de las cosas</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>LDCs</subject><subject>Moisture content</subject><subject>monitoreo en tiempo real</subject><subject>pequeños productores</subject><subject>proceso de secado</subject><subject>real</subject><subject>Real time</subject><subject>small farmer coffee producers</subject><subject>Software development</subject><subject>Technology assessment</subject><subject>time monitoring</subject><issn>0121-1129</issn><issn>2357-5328</issn><issn>2357-5328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>FKZ</sourceid><recordid>eNo1T81qg0AYXEoLDWneYaG9avfbPxV62Zo1EUxs1R5ykjVuwJBqqkmhb19D2rkMDDPDDEJPQFwIiGDPBCgA0MD9ZsxtZeBSQrkLHif8Bk0oE54jGPVv0eTidC7WezQbhj0ZIX3BgE3Qe5wWzqvK9RwXOlyu0yRdbHCUZrhYahymUaQ1nmebeL3Ab1ka6jzHc1UorNYq2eRxjtMI5yuVJDhS2Upn-QO625nDYGd_PEUfkS7CpTM2x6FKnBqkPDk0CLa18TmXXFgPKs4FZ1DvdtyrKxCm2ta8roypRGU9I-2WSMtIJfwAfJCcsil6ufbWjTm09lQe--bT9D9lZ5ryXzu3Td90e1PaoVRZMR4Hj0gBZIw_XuPHvvs62-FU7rtz346LSwZAxlmcEPYLsxZh3w</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Acosta-Minoli, César</creator><creator>Carmona, Paulo-César</creator><creator>Mesa-Mazo, Mónica</creator><creator>Vargas-Gil, Juan-Diego</creator><creator>Velásquez, Juan-Pablo</creator><general>Universidad Pedagogica y Tecnologica de Colombia</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20240101</creationdate><title>IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS</title><author>Acosta-Minoli, César ; Carmona, Paulo-César ; Mesa-Mazo, Mónica ; Vargas-Gil, Juan-Diego ; Velásquez, Juan-Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d166t-299cda844645e71b445431dff47db15abcd4dbaab5be7a6ec06e30b5891816423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>200 device</topic><topic>Air temperature</topic><topic>análisis de datos</topic><topic>café</topic><topic>Case studies</topic><topic>Coffee</topic><topic>coffee beans</topic><topic>Data analysis</topic><topic>data analytics</topic><topic>Data transmission</topic><topic>Developing countries</topic><topic>dispositivo Dh</topic><topic>Drying</topic><topic>drying process</topic><topic>Exposure</topic><topic>Impact analysis</topic><topic>internet de las cosas</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>LDCs</topic><topic>Moisture content</topic><topic>monitoreo en tiempo real</topic><topic>pequeños productores</topic><topic>proceso de secado</topic><topic>real</topic><topic>Real time</topic><topic>small farmer coffee producers</topic><topic>Software development</topic><topic>Technology assessment</topic><topic>time monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Acosta-Minoli, César</creatorcontrib><creatorcontrib>Carmona, Paulo-César</creatorcontrib><creatorcontrib>Mesa-Mazo, Mónica</creatorcontrib><creatorcontrib>Vargas-Gil, Juan-Diego</creatorcontrib><creatorcontrib>Velásquez, Juan-Pablo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Revista FI-UPTC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta-Minoli, César</au><au>Carmona, Paulo-César</au><au>Mesa-Mazo, Mónica</au><au>Vargas-Gil, Juan-Diego</au><au>Velásquez, Juan-Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS</atitle><jtitle>Revista FI-UPTC</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><issue>69</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0121-1129</issn><issn>2357-5328</issn><eissn>2357-5328</eissn><abstract>The processing of coffee beans after harvest relies heavily on drying, which significantly affects the final product quality. Despite its importance, smallholder farmers in developing countries often resort to using patios and sun exposure for drying, exposing the process to numerous uncontrollable variables that may compromise the quality of coffee. Furthermore, coffee farmers typically employ subjective methods to determine moisture content, which can lead to inaccurate measurement results. This study proposes an Internet-of-Things (IoT)-based technology for monitoring and analyzing the coffee drying process. By utilizing a portable set of sensors and data analytics, this technology collects real-time data on various parameters of the drying process, including grain moisture and air temperature and humidity. Once registered in the system, users can access and analyze the data using their cell phones. The study employed a three-phase methodology: first, designing and developing an IoT framework to capture and analyze data related to the coffee drying process; second, implementing the IoT system, including software development for data transmission, processing, and visualization; and third, conducting a case study with a female smallholder coffee farmer association in Génova, Quindío, Colombia, to deploy the technology, evaluate its usability, and analyze its impact on the drying process. The results of the case study show that the proposed technology allows users to visualize trends and patterns in the drying process based on previously entered information. This offers valuable insights into the drying process, enabling farmers to make informed decisions and take appropriate action to improve the quality of their coffee beans.</abstract><cop>Tunja</cop><pub>Universidad Pedagogica y Tecnologica de Colombia</pub><doi>10.19053/01211129.v33.n69.2024.17404</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0121-1129 |
ispartof | Revista FI-UPTC, 2024-01, Vol.33 (69), p.1-12 |
issn | 0121-1129 2357-5328 2357-5328 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001706510 |
source | Dialnet; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 200 device Air temperature análisis de datos café Case studies Coffee coffee beans Data analysis data analytics Data transmission Developing countries dispositivo Dh Drying drying process Exposure Impact analysis internet de las cosas Internet of Things IoT LDCs Moisture content monitoreo en tiempo real pequeños productores proceso de secado real Real time small farmer coffee producers Software development Technology assessment time monitoring |
title | IOT-BASED TECHNOLOGY FOR THE COFFEE DRYING PROCESS DATA ANALYSIS OF SMALL FARMERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IOT-BASED%20TECHNOLOGY%20FOR%20THE%20COFFEE%20DRYING%20PROCESS%20DATA%20ANALYSIS%20OF%20SMALL%20FARMERS&rft.jtitle=Revista%20FI-UPTC&rft.au=Acosta-Minoli,%20C%C3%A9sar&rft.date=2024-01-01&rft.volume=33&rft.issue=69&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0121-1129&rft.eissn=2357-5328&rft_id=info:doi/10.19053/01211129.v33.n69.2024.17404&rft_dat=%3Cproquest_dialn%3E3110464400%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110464400&rft_id=info:pmid/&rfr_iscdi=true |