Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel
Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Ma...
Gespeichert in:
Veröffentlicht in: | International journal of interactive multimedia and artificial intelligence 2022-03, Vol.7 (3), p.86-95 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 3 |
container_start_page | 86 |
container_title | International journal of interactive multimedia and artificial intelligence |
container_volume | 7 |
creator | Sanchez-Torres, Fulgencio Gonzalez, Ivan Dobrescu, Cosmin C |
description | Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Machine Learning (ML) to support decision-making in company cost-control management. Specifically we used the ability of hierarchical agglomerative clustering (HAC) algorithms to generate clusters and suggest possible candidate products that could be substituted for other, more cost-effective ones. These candidate products were analyzed by a panel of company experts, facilitating decisions based on business costs. We needed to analyze and modify the company's ecosystem and its associated variables to obtain an adequate data warehouse during the study which was developed over three years and validated HAC as a support to decision-making in cost control. KEYWORDS Business Analysis With Expert Assessment, Business Intelligence 4.0, Candidate Product, ICT Ecosystem, Machine Learning. |
doi_str_mv | 10.9781/ijimai.2022.02.008 |
format | Article |
fullrecord | <record><control><sourceid>gale_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001613979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A698051645</galeid><sourcerecordid>A698051645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6724cb50697737981bb97abd7fe31f146424017b425fca4e2b1179be248cab073</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUvsHPAU875pks8lGvNT60UJFKPUckjRbp2wT2WwP_ntTVkXByTAZHu8Nk7wsuyS4kKIm17CDvYaCYkoLnBLXJ9mIyFrmhHN8-qs_zyYx7nCKkrCKklG2etb2DbxDS6c7D36LwKO7Q0xQjGjhe9e2sHXeOsQKfINmIfap-L4L7ZGq0b2LPXjdQ_BoHhL_IjtrdBvd5OseZ6-PD-vZPF--PC1m02VuS077nAvKrKkwl0KUQtbEGCm02YjGlaQhjDPKMBGG0aqxmjlqCBHSOMpqqw0W5Ti7HeZuQLfe9eq9S__QfaigQX1jBw8dhJ1WLqrpap1eTjgppZBJfjXIt7p1CnwT-k7bPUSrplzWuCKcVYlV_MNKZ-P2YIN3DST8j4AOAtuFGDvX_KxFsDrapQa71NEuhVPiuvwEWw6HXg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel</title><source>Electronic Journals Library</source><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><creator>Sanchez-Torres, Fulgencio ; Gonzalez, Ivan ; Dobrescu, Cosmin C</creator><creatorcontrib>Sanchez-Torres, Fulgencio ; Gonzalez, Ivan ; Dobrescu, Cosmin C</creatorcontrib><description>Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Machine Learning (ML) to support decision-making in company cost-control management. Specifically we used the ability of hierarchical agglomerative clustering (HAC) algorithms to generate clusters and suggest possible candidate products that could be substituted for other, more cost-effective ones. These candidate products were analyzed by a panel of company experts, facilitating decisions based on business costs. We needed to analyze and modify the company's ecosystem and its associated variables to obtain an adequate data warehouse during the study which was developed over three years and validated HAC as a support to decision-making in cost control. KEYWORDS Business Analysis With Expert Assessment, Business Intelligence 4.0, Candidate Product, ICT Ecosystem, Machine Learning.</description><identifier>ISSN: 1989-1660</identifier><identifier>EISSN: 1989-1660</identifier><identifier>DOI: 10.9781/ijimai.2022.02.008</identifier><language>eng</language><publisher>IMAI Software</publisher><subject>Algorithms ; Backup software ; Business Analysis With Expert Assessment Business Intelligence Candidate Product ICT Ecosystem Machine Learning ; Cost control ; Decision-making ; Machine learning</subject><ispartof>International journal of interactive multimedia and artificial intelligence, 2022-03, Vol.7 (3), p.86-95</ispartof><rights>COPYRIGHT 2022 IMAI Software</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,870,27901,27902</link.rule.ids></links><search><creatorcontrib>Sanchez-Torres, Fulgencio</creatorcontrib><creatorcontrib>Gonzalez, Ivan</creatorcontrib><creatorcontrib>Dobrescu, Cosmin C</creatorcontrib><title>Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel</title><title>International journal of interactive multimedia and artificial intelligence</title><description>Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Machine Learning (ML) to support decision-making in company cost-control management. Specifically we used the ability of hierarchical agglomerative clustering (HAC) algorithms to generate clusters and suggest possible candidate products that could be substituted for other, more cost-effective ones. These candidate products were analyzed by a panel of company experts, facilitating decisions based on business costs. We needed to analyze and modify the company's ecosystem and its associated variables to obtain an adequate data warehouse during the study which was developed over three years and validated HAC as a support to decision-making in cost control. KEYWORDS Business Analysis With Expert Assessment, Business Intelligence 4.0, Candidate Product, ICT Ecosystem, Machine Learning.</description><subject>Algorithms</subject><subject>Backup software</subject><subject>Business Analysis With Expert Assessment Business Intelligence Candidate Product ICT Ecosystem Machine Learning</subject><subject>Cost control</subject><subject>Decision-making</subject><subject>Machine learning</subject><issn>1989-1660</issn><issn>1989-1660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNptUU1LAzEQXUTBUvsHPAU875pks8lGvNT60UJFKPUckjRbp2wT2WwP_ntTVkXByTAZHu8Nk7wsuyS4kKIm17CDvYaCYkoLnBLXJ9mIyFrmhHN8-qs_zyYx7nCKkrCKklG2etb2DbxDS6c7D36LwKO7Q0xQjGjhe9e2sHXeOsQKfINmIfap-L4L7ZGq0b2LPXjdQ_BoHhL_IjtrdBvd5OseZ6-PD-vZPF--PC1m02VuS077nAvKrKkwl0KUQtbEGCm02YjGlaQhjDPKMBGG0aqxmjlqCBHSOMpqqw0W5Ti7HeZuQLfe9eq9S__QfaigQX1jBw8dhJ1WLqrpap1eTjgppZBJfjXIt7p1CnwT-k7bPUSrplzWuCKcVYlV_MNKZ-P2YIN3DST8j4AOAtuFGDvX_KxFsDrapQa71NEuhVPiuvwEWw6HXg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sanchez-Torres, Fulgencio</creator><creator>Gonzalez, Ivan</creator><creator>Dobrescu, Cosmin C</creator><general>IMAI Software</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20220301</creationdate><title>Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel</title><author>Sanchez-Torres, Fulgencio ; Gonzalez, Ivan ; Dobrescu, Cosmin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6724cb50697737981bb97abd7fe31f146424017b425fca4e2b1179be248cab073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Backup software</topic><topic>Business Analysis With Expert Assessment Business Intelligence Candidate Product ICT Ecosystem Machine Learning</topic><topic>Cost control</topic><topic>Decision-making</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Torres, Fulgencio</creatorcontrib><creatorcontrib>Gonzalez, Ivan</creatorcontrib><creatorcontrib>Dobrescu, Cosmin C</creatorcontrib><collection>CrossRef</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>International journal of interactive multimedia and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Torres, Fulgencio</au><au>Gonzalez, Ivan</au><au>Dobrescu, Cosmin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel</atitle><jtitle>International journal of interactive multimedia and artificial intelligence</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>7</volume><issue>3</issue><spage>86</spage><epage>95</epage><pages>86-95</pages><issn>1989-1660</issn><eissn>1989-1660</eissn><abstract>Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Machine Learning (ML) to support decision-making in company cost-control management. Specifically we used the ability of hierarchical agglomerative clustering (HAC) algorithms to generate clusters and suggest possible candidate products that could be substituted for other, more cost-effective ones. These candidate products were analyzed by a panel of company experts, facilitating decisions based on business costs. We needed to analyze and modify the company's ecosystem and its associated variables to obtain an adequate data warehouse during the study which was developed over three years and validated HAC as a support to decision-making in cost control. KEYWORDS Business Analysis With Expert Assessment, Business Intelligence 4.0, Candidate Product, ICT Ecosystem, Machine Learning.</abstract><pub>IMAI Software</pub><doi>10.9781/ijimai.2022.02.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1989-1660 |
ispartof | International journal of interactive multimedia and artificial intelligence, 2022-03, Vol.7 (3), p.86-95 |
issn | 1989-1660 1989-1660 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001613979 |
source | Electronic Journals Library; Dialnet; DOAJ Directory of Open Access Journals |
subjects | Algorithms Backup software Business Analysis With Expert Assessment Business Intelligence Candidate Product ICT Ecosystem Machine Learning Cost control Decision-making Machine learning |
title | Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20in%20Business%20Intelligence%204.0:%20Cost%20Control%20in%20a%20Destination%20Hotel&rft.jtitle=International%20journal%20of%20interactive%20multimedia%20and%20artificial%20intelligence&rft.au=Sanchez-Torres,%20Fulgencio&rft.date=2022-03-01&rft.volume=7&rft.issue=3&rft.spage=86&rft.epage=95&rft.pages=86-95&rft.issn=1989-1660&rft.eissn=1989-1660&rft_id=info:doi/10.9781/ijimai.2022.02.008&rft_dat=%3Cgale_dialn%3EA698051645%3C/gale_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A698051645&rfr_iscdi=true |