Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification

With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tourism & management studies 2023-01, Vol.19 (2), p.21-37
Hauptverfasser: Rey Moreno, Manuel, Sánchez-Franco, Manuel J, Rey Tienda, María De la Sierra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 2
container_start_page 21
container_title Tourism & management studies
container_volume 19
creator Rey Moreno, Manuel
Sánchez-Franco, Manuel J
Rey Tienda, María De la Sierra
description With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.
doi_str_mv 10.18089/tms.2023.190202
format Article
fullrecord <record><control><sourceid>scielo_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001605418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S2182_84582023000200021</scielo_id><sourcerecordid>S2182_84582023000200021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</originalsourceid><addsrcrecordid>eNpNkd1KxDAQhYsouKj3XuYFWvPTdlPwZl3WH1gQdK-8CWmSapZuUjJZWN_AxzbdqngRJgzfmTPMybJrggvCMW9u4g4KiikrSINTPclmlHCa87KuT__9z7MrgC3GmDSMEVLOsq_VQe6ss-4dxSAdSBWtdzkMRtnOKgQyWuimLpJOJ2oPEVmHFja0rj32Pnw0PRRokZBh6K2SR9x36G71svFDmjNibyb4HBKMojlEpHoJMJoc6cvsrJM9mKufepFt7leb5WO-fn54Wi7WuWKsinmjSUMMY21LTcs6UlOiaz1vmGyqVqm50bqjXKqGz6mkJdZ12VW11oRVnJYVu8hup7Hayt6ZKIZgdzJ8Ci-t-O3tnQ3Wb6UwIBYvm_FeNa5KwpO8mOSgrOm92Pp9cGld8TreWPAyuaQYkoKOjyQBngQqeIBguj9DgsUxO5GyE6NITNmxb4LZjXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><source>Dialnet</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra</creator><creatorcontrib>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra ; Faculty of Economics and Business Sciences, University of Seville, Spain ; Faculty of Tourism and Finance, University of Seville, Spain ; University Loyola of Andalusia, Seville, Spain</creatorcontrib><description>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</description><identifier>ISSN: 2182-8466</identifier><identifier>ISSN: 2182-8458</identifier><identifier>EISSN: 2182-8466</identifier><identifier>DOI: 10.18089/tms.2023.190202</identifier><language>eng</language><publisher>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</publisher><subject>Airbnb ; BERT ; confianza ; HOSPITALITY, LEISURE, SPORT &amp; TOURISM ; hoteles ; hotels ; satisfacción ; satisfaction ; Shot ; trust ; Zero</subject><ispartof>Tourism &amp; management studies, 2023-01, Vol.19 (2), p.21-37</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,874,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Rey Moreno, Manuel</creatorcontrib><creatorcontrib>Sánchez-Franco, Manuel J</creatorcontrib><creatorcontrib>Rey Tienda, María De la Sierra</creatorcontrib><creatorcontrib>Faculty of Economics and Business Sciences, University of Seville, Spain</creatorcontrib><creatorcontrib>Faculty of Tourism and Finance, University of Seville, Spain</creatorcontrib><creatorcontrib>University Loyola of Andalusia, Seville, Spain</creatorcontrib><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><title>Tourism &amp; management studies</title><addtitle>TMStudies</addtitle><description>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</description><subject>Airbnb</subject><subject>BERT</subject><subject>confianza</subject><subject>HOSPITALITY, LEISURE, SPORT &amp; TOURISM</subject><subject>hoteles</subject><subject>hotels</subject><subject>satisfacción</subject><subject>satisfaction</subject><subject>Shot</subject><subject>trust</subject><subject>Zero</subject><issn>2182-8466</issn><issn>2182-8458</issn><issn>2182-8466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNpNkd1KxDAQhYsouKj3XuYFWvPTdlPwZl3WH1gQdK-8CWmSapZuUjJZWN_AxzbdqngRJgzfmTPMybJrggvCMW9u4g4KiikrSINTPclmlHCa87KuT__9z7MrgC3GmDSMEVLOsq_VQe6ss-4dxSAdSBWtdzkMRtnOKgQyWuimLpJOJ2oPEVmHFja0rj32Pnw0PRRokZBh6K2SR9x36G71svFDmjNibyb4HBKMojlEpHoJMJoc6cvsrJM9mKufepFt7leb5WO-fn54Wi7WuWKsinmjSUMMY21LTcs6UlOiaz1vmGyqVqm50bqjXKqGz6mkJdZ12VW11oRVnJYVu8hup7Hayt6ZKIZgdzJ8Ci-t-O3tnQ3Wb6UwIBYvm_FeNa5KwpO8mOSgrOm92Pp9cGld8TreWPAyuaQYkoKOjyQBngQqeIBguj9DgsUxO5GyE6NITNmxb4LZjXs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rey Moreno, Manuel</creator><creator>Sánchez-Franco, Manuel J</creator><creator>Rey Tienda, María De la Sierra</creator><general>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20230101</creationdate><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><author>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airbnb</topic><topic>BERT</topic><topic>confianza</topic><topic>HOSPITALITY, LEISURE, SPORT &amp; TOURISM</topic><topic>hoteles</topic><topic>hotels</topic><topic>satisfacción</topic><topic>satisfaction</topic><topic>Shot</topic><topic>trust</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey Moreno, Manuel</creatorcontrib><creatorcontrib>Sánchez-Franco, Manuel J</creatorcontrib><creatorcontrib>Rey Tienda, María De la Sierra</creatorcontrib><creatorcontrib>Faculty of Economics and Business Sciences, University of Seville, Spain</creatorcontrib><creatorcontrib>Faculty of Tourism and Finance, University of Seville, Spain</creatorcontrib><creatorcontrib>University Loyola of Andalusia, Seville, Spain</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Tourism &amp; management studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey Moreno, Manuel</au><au>Sánchez-Franco, Manuel J</au><au>Rey Tienda, María De la Sierra</au><aucorp>Faculty of Economics and Business Sciences, University of Seville, Spain</aucorp><aucorp>Faculty of Tourism and Finance, University of Seville, Spain</aucorp><aucorp>University Loyola of Andalusia, Seville, Spain</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</atitle><jtitle>Tourism &amp; management studies</jtitle><addtitle>TMStudies</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>2</issue><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>2182-8466</issn><issn>2182-8458</issn><eissn>2182-8466</eissn><abstract>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</abstract><pub>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</pub><doi>10.18089/tms.2023.190202</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2182-8466
ispartof Tourism & management studies, 2023-01, Vol.19 (2), p.21-37
issn 2182-8466
2182-8458
2182-8466
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001605418
source Dialnet; EZB-FREE-00999 freely available EZB journals
subjects Airbnb
BERT
confianza
HOSPITALITY, LEISURE, SPORT & TOURISM
hoteles
hotels
satisfacción
satisfaction
Shot
trust
Zero
title Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20transaction-specific%20satisfaction%20and%20trust%20in%20Airbnb%20and%20hotels.%20An%20application%20of%20BERTopic%20and%20Zero-shot%20text%20classification&rft.jtitle=Tourism%20&%20management%20studies&rft.au=Rey%20Moreno,%20Manuel&rft.aucorp=Faculty%20of%20Economics%20and%20Business%20Sciences,%20University%20of%20Seville,%20Spain&rft.date=2023-01-01&rft.volume=19&rft.issue=2&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=2182-8466&rft.eissn=2182-8466&rft_id=info:doi/10.18089/tms.2023.190202&rft_dat=%3Cscielo_dialn%3ES2182_84582023000200021%3C/scielo_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S2182_84582023000200021&rfr_iscdi=true