Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification
With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to g...
Gespeichert in:
Veröffentlicht in: | Tourism & management studies 2023-01, Vol.19 (2), p.21-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 2 |
container_start_page | 21 |
container_title | Tourism & management studies |
container_volume | 19 |
creator | Rey Moreno, Manuel Sánchez-Franco, Manuel J Rey Tienda, María De la Sierra |
description | With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services. |
doi_str_mv | 10.18089/tms.2023.190202 |
format | Article |
fullrecord | <record><control><sourceid>scielo_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001605418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S2182_84582023000200021</scielo_id><sourcerecordid>S2182_84582023000200021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</originalsourceid><addsrcrecordid>eNpNkd1KxDAQhYsouKj3XuYFWvPTdlPwZl3WH1gQdK-8CWmSapZuUjJZWN_AxzbdqngRJgzfmTPMybJrggvCMW9u4g4KiikrSINTPclmlHCa87KuT__9z7MrgC3GmDSMEVLOsq_VQe6ss-4dxSAdSBWtdzkMRtnOKgQyWuimLpJOJ2oPEVmHFja0rj32Pnw0PRRokZBh6K2SR9x36G71svFDmjNibyb4HBKMojlEpHoJMJoc6cvsrJM9mKufepFt7leb5WO-fn54Wi7WuWKsinmjSUMMY21LTcs6UlOiaz1vmGyqVqm50bqjXKqGz6mkJdZ12VW11oRVnJYVu8hup7Hayt6ZKIZgdzJ8Ci-t-O3tnQ3Wb6UwIBYvm_FeNa5KwpO8mOSgrOm92Pp9cGld8TreWPAyuaQYkoKOjyQBngQqeIBguj9DgsUxO5GyE6NITNmxb4LZjXs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><source>Dialnet</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra</creator><creatorcontrib>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra ; Faculty of Economics and Business Sciences, University of Seville, Spain ; Faculty of Tourism and Finance, University of Seville, Spain ; University Loyola of Andalusia, Seville, Spain</creatorcontrib><description>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</description><identifier>ISSN: 2182-8466</identifier><identifier>ISSN: 2182-8458</identifier><identifier>EISSN: 2182-8466</identifier><identifier>DOI: 10.18089/tms.2023.190202</identifier><language>eng</language><publisher>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</publisher><subject>Airbnb ; BERT ; confianza ; HOSPITALITY, LEISURE, SPORT & TOURISM ; hoteles ; hotels ; satisfacción ; satisfaction ; Shot ; trust ; Zero</subject><ispartof>Tourism & management studies, 2023-01, Vol.19 (2), p.21-37</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,874,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Rey Moreno, Manuel</creatorcontrib><creatorcontrib>Sánchez-Franco, Manuel J</creatorcontrib><creatorcontrib>Rey Tienda, María De la Sierra</creatorcontrib><creatorcontrib>Faculty of Economics and Business Sciences, University of Seville, Spain</creatorcontrib><creatorcontrib>Faculty of Tourism and Finance, University of Seville, Spain</creatorcontrib><creatorcontrib>University Loyola of Andalusia, Seville, Spain</creatorcontrib><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><title>Tourism & management studies</title><addtitle>TMStudies</addtitle><description>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</description><subject>Airbnb</subject><subject>BERT</subject><subject>confianza</subject><subject>HOSPITALITY, LEISURE, SPORT & TOURISM</subject><subject>hoteles</subject><subject>hotels</subject><subject>satisfacción</subject><subject>satisfaction</subject><subject>Shot</subject><subject>trust</subject><subject>Zero</subject><issn>2182-8466</issn><issn>2182-8458</issn><issn>2182-8466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNpNkd1KxDAQhYsouKj3XuYFWvPTdlPwZl3WH1gQdK-8CWmSapZuUjJZWN_AxzbdqngRJgzfmTPMybJrggvCMW9u4g4KiikrSINTPclmlHCa87KuT__9z7MrgC3GmDSMEVLOsq_VQe6ss-4dxSAdSBWtdzkMRtnOKgQyWuimLpJOJ2oPEVmHFja0rj32Pnw0PRRokZBh6K2SR9x36G71svFDmjNibyb4HBKMojlEpHoJMJoc6cvsrJM9mKufepFt7leb5WO-fn54Wi7WuWKsinmjSUMMY21LTcs6UlOiaz1vmGyqVqm50bqjXKqGz6mkJdZ12VW11oRVnJYVu8hup7Hayt6ZKIZgdzJ8Ci-t-O3tnQ3Wb6UwIBYvm_FeNa5KwpO8mOSgrOm92Pp9cGld8TreWPAyuaQYkoKOjyQBngQqeIBguj9DgsUxO5GyE6NITNmxb4LZjXs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rey Moreno, Manuel</creator><creator>Sánchez-Franco, Manuel J</creator><creator>Rey Tienda, María De la Sierra</creator><general>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20230101</creationdate><title>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</title><author>Rey Moreno, Manuel ; Sánchez-Franco, Manuel J ; Rey Tienda, María De la Sierra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-9d191e33bb2eb3f1621d6d793a95bcc7eddf28ac9872a240d64f56dd13582453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airbnb</topic><topic>BERT</topic><topic>confianza</topic><topic>HOSPITALITY, LEISURE, SPORT & TOURISM</topic><topic>hoteles</topic><topic>hotels</topic><topic>satisfacción</topic><topic>satisfaction</topic><topic>Shot</topic><topic>trust</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey Moreno, Manuel</creatorcontrib><creatorcontrib>Sánchez-Franco, Manuel J</creatorcontrib><creatorcontrib>Rey Tienda, María De la Sierra</creatorcontrib><creatorcontrib>Faculty of Economics and Business Sciences, University of Seville, Spain</creatorcontrib><creatorcontrib>Faculty of Tourism and Finance, University of Seville, Spain</creatorcontrib><creatorcontrib>University Loyola of Andalusia, Seville, Spain</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Tourism & management studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey Moreno, Manuel</au><au>Sánchez-Franco, Manuel J</au><au>Rey Tienda, María De la Sierra</au><aucorp>Faculty of Economics and Business Sciences, University of Seville, Spain</aucorp><aucorp>Faculty of Tourism and Finance, University of Seville, Spain</aucorp><aucorp>University Loyola of Andalusia, Seville, Spain</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification</atitle><jtitle>Tourism & management studies</jtitle><addtitle>TMStudies</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>2</issue><spage>21</spage><epage>37</epage><pages>21-37</pages><issn>2182-8466</issn><issn>2182-8458</issn><eissn>2182-8466</eissn><abstract>With a methodological approach, this article explores the application of data mining to the user-generated content of tourist accommodation on infomediation platforms and social networks. Its objective is to present an algorithm that allows the identification of service characteristics relevant to guest satisfaction and trust. Our study processes unstructured, natural-language data about Airbnb and hotel stays (the final dataset was 12,236 Airbnb sentences and 12,200 hotel sentences from 2018 until September 25 2021). Among the results is a computational algorithm that uses BERTopic to identify latent themes (or topics) in the narratives. Secondly, our analysis applies a Zero-shot classification approach for classifying guest reviews into labels related to guests' satisfaction and trust. Thirdly, we execute a Principal Component Analysis to investigate the sufficiency relationships between extracted topics, customer satisfaction, and trust-based labels. To sum up, and as practical implications, our study adds to the knowledge about the sharing economy by providing insights for developing marketing policies and a better understanding of hospitality services.</abstract><pub>Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve</pub><doi>10.18089/tms.2023.190202</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2182-8466 |
ispartof | Tourism & management studies, 2023-01, Vol.19 (2), p.21-37 |
issn | 2182-8466 2182-8458 2182-8466 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001605418 |
source | Dialnet; EZB-FREE-00999 freely available EZB journals |
subjects | Airbnb BERT confianza HOSPITALITY, LEISURE, SPORT & TOURISM hoteles hotels satisfacción satisfaction Shot trust Zero |
title | Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20transaction-specific%20satisfaction%20and%20trust%20in%20Airbnb%20and%20hotels.%20An%20application%20of%20BERTopic%20and%20Zero-shot%20text%20classification&rft.jtitle=Tourism%20&%20management%20studies&rft.au=Rey%20Moreno,%20Manuel&rft.aucorp=Faculty%20of%20Economics%20and%20Business%20Sciences,%20University%20of%20Seville,%20Spain&rft.date=2023-01-01&rft.volume=19&rft.issue=2&rft.spage=21&rft.epage=37&rft.pages=21-37&rft.issn=2182-8466&rft.eissn=2182-8466&rft_id=info:doi/10.18089/tms.2023.190202&rft_dat=%3Cscielo_dialn%3ES2182_84582023000200021%3C/scielo_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S2182_84582023000200021&rfr_iscdi=true |