Nicole Oresme on Motion and the Atomization of the Continuum
As Aristotle classically defined it, continuity is the property of being infinitely divisible into ever-divisible parts. How has this conception been affected by the process of mathematization of motion during the 14th century? This paper focuses on Nicole Oresme, who extensively commented on Aristo...
Gespeichert in:
Veröffentlicht in: | Revista española de filosofía medieval 2022, Vol.29 (1), p.113-155 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Revista española de filosofía medieval |
container_volume | 29 |
creator | Debroise, Philippe |
description | As Aristotle classically defined it, continuity is the property of being infinitely divisible into ever-divisible parts. How has this conception been affected by the process of mathematization of motion during the 14th century? This paper focuses on Nicole Oresme, who extensively commented on Aristotle’s Physics, but also made decisive contributions to the mathematics of motion. Oresme’s attitude about continuity seems ambivalent: on the one hand, he never really departs from Aristotle’s conception, but on the other hand, he uses it in a completely new way in his mathematics, particularly in his Questions on Euclidean geometry, a tantamount way to an atomization of motion. If the fluxus theory of natural motion involves that continuity is an essential property of real motion, defined as a res successiva, the ontological and mathematical structure of this continuity implies that continuum is in some way “composed” of an infinite number of indivisibles. In fact, Oresme’s analysis opened the path to a completely new kind of mathematical continuity. |
doi_str_mv | 10.21071/refime.v29i1.15137 |
format | Article |
fullrecord | <record><control><sourceid>hal_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001559648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03867993v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2467-ddd694f05f5c70a493e4047a51aa66e6e1971920d79774baf5ce4c667d9fbce23</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRsNT-Ai-5ekjd2c8s9BKKWqFakHpettkN3ZJkJUkL-uvdJio4l4GH9x2YB6FbwHMCWMJ960pfu_mJKA9z4EDlBZoQTnEqM5ldogkApSlWmFyjWdcdcBzBARidoMWrL0Llkk3rutoloUleQu_jMo1N-r1L8j7U_ssMLJQDWoam983xWN-gq9JUnZv97Cl6f3zYLlfpevP0vMzXaUGYkKm1VihWYl7yQmLDFHUMM2k4GCOEEw6UBEWwlUpKtjMx5lghhLSq3BWO0ClajHetN1Xjev3R-tq0nzoYr3_ZsfGtDwejXafzt238EThXgmWxfjfW96b6V13la31mmGZCKkVPELN0zBZt6Lpo9q8AWA-69ahbD7r1oJt-A8h7dFI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nicole Oresme on Motion and the Atomization of the Continuum</title><source>Dialnet</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Debroise, Philippe</creator><creatorcontrib>Debroise, Philippe</creatorcontrib><description>As Aristotle classically defined it, continuity is the property of being infinitely divisible into ever-divisible parts. How has this conception been affected by the process of mathematization of motion during the 14th century? This paper focuses on Nicole Oresme, who extensively commented on Aristotle’s Physics, but also made decisive contributions to the mathematics of motion. Oresme’s attitude about continuity seems ambivalent: on the one hand, he never really departs from Aristotle’s conception, but on the other hand, he uses it in a completely new way in his mathematics, particularly in his Questions on Euclidean geometry, a tantamount way to an atomization of motion. If the fluxus theory of natural motion involves that continuity is an essential property of real motion, defined as a res successiva, the ontological and mathematical structure of this continuity implies that continuum is in some way “composed” of an infinite number of indivisibles. In fact, Oresme’s analysis opened the path to a completely new kind of mathematical continuity.</description><identifier>ISSN: 1133-0902</identifier><identifier>EISSN: 2530-7878</identifier><identifier>DOI: 10.21071/refime.v29i1.15137</identifier><language>eng</language><publisher>Sociedad Española de Filosofía Medieval</publisher><subject>Continuidad ; Continuity ; Fluxus Theory ; History, Philosophy and Sociology of Sciences ; Humanities and Social Sciences ; Indivisibles ; infinitamente pequeño ; Infinitely Small ; matemáticas ; Mathematics ; Motion ; movimiento ; Nicole Oresme ; Ontology ; ontología ; res successiva ; teoría del fluxus</subject><ispartof>Revista española de filosofía medieval, 2022, Vol.29 (1), p.113-155</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,870,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03867993$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Debroise, Philippe</creatorcontrib><title>Nicole Oresme on Motion and the Atomization of the Continuum</title><title>Revista española de filosofía medieval</title><description>As Aristotle classically defined it, continuity is the property of being infinitely divisible into ever-divisible parts. How has this conception been affected by the process of mathematization of motion during the 14th century? This paper focuses on Nicole Oresme, who extensively commented on Aristotle’s Physics, but also made decisive contributions to the mathematics of motion. Oresme’s attitude about continuity seems ambivalent: on the one hand, he never really departs from Aristotle’s conception, but on the other hand, he uses it in a completely new way in his mathematics, particularly in his Questions on Euclidean geometry, a tantamount way to an atomization of motion. If the fluxus theory of natural motion involves that continuity is an essential property of real motion, defined as a res successiva, the ontological and mathematical structure of this continuity implies that continuum is in some way “composed” of an infinite number of indivisibles. In fact, Oresme’s analysis opened the path to a completely new kind of mathematical continuity.</description><subject>Continuidad</subject><subject>Continuity</subject><subject>Fluxus Theory</subject><subject>History, Philosophy and Sociology of Sciences</subject><subject>Humanities and Social Sciences</subject><subject>Indivisibles</subject><subject>infinitamente pequeño</subject><subject>Infinitely Small</subject><subject>matemáticas</subject><subject>Mathematics</subject><subject>Motion</subject><subject>movimiento</subject><subject>Nicole Oresme</subject><subject>Ontology</subject><subject>ontología</subject><subject>res successiva</subject><subject>teoría del fluxus</subject><issn>1133-0902</issn><issn>2530-7878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNpVkE1Lw0AQhhdRsNT-Ai-5ekjd2c8s9BKKWqFakHpettkN3ZJkJUkL-uvdJio4l4GH9x2YB6FbwHMCWMJ960pfu_mJKA9z4EDlBZoQTnEqM5ldogkApSlWmFyjWdcdcBzBARidoMWrL0Llkk3rutoloUleQu_jMo1N-r1L8j7U_ssMLJQDWoam983xWN-gq9JUnZv97Cl6f3zYLlfpevP0vMzXaUGYkKm1VihWYl7yQmLDFHUMM2k4GCOEEw6UBEWwlUpKtjMx5lghhLSq3BWO0ClajHetN1Xjev3R-tq0nzoYr3_ZsfGtDwejXafzt238EThXgmWxfjfW96b6V13la31mmGZCKkVPELN0zBZt6Lpo9q8AWA-69ahbD7r1oJt-A8h7dFI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Debroise, Philippe</creator><general>Sociedad Española de Filosofía Medieval</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>2022</creationdate><title>Nicole Oresme on Motion and the Atomization of the Continuum</title><author>Debroise, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2467-ddd694f05f5c70a493e4047a51aa66e6e1971920d79774baf5ce4c667d9fbce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuidad</topic><topic>Continuity</topic><topic>Fluxus Theory</topic><topic>History, Philosophy and Sociology of Sciences</topic><topic>Humanities and Social Sciences</topic><topic>Indivisibles</topic><topic>infinitamente pequeño</topic><topic>Infinitely Small</topic><topic>matemáticas</topic><topic>Mathematics</topic><topic>Motion</topic><topic>movimiento</topic><topic>Nicole Oresme</topic><topic>Ontology</topic><topic>ontología</topic><topic>res successiva</topic><topic>teoría del fluxus</topic><toplevel>online_resources</toplevel><creatorcontrib>Debroise, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Revista española de filosofía medieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debroise, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nicole Oresme on Motion and the Atomization of the Continuum</atitle><jtitle>Revista española de filosofía medieval</jtitle><date>2022</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><spage>113</spage><epage>155</epage><pages>113-155</pages><issn>1133-0902</issn><eissn>2530-7878</eissn><abstract>As Aristotle classically defined it, continuity is the property of being infinitely divisible into ever-divisible parts. How has this conception been affected by the process of mathematization of motion during the 14th century? This paper focuses on Nicole Oresme, who extensively commented on Aristotle’s Physics, but also made decisive contributions to the mathematics of motion. Oresme’s attitude about continuity seems ambivalent: on the one hand, he never really departs from Aristotle’s conception, but on the other hand, he uses it in a completely new way in his mathematics, particularly in his Questions on Euclidean geometry, a tantamount way to an atomization of motion. If the fluxus theory of natural motion involves that continuity is an essential property of real motion, defined as a res successiva, the ontological and mathematical structure of this continuity implies that continuum is in some way “composed” of an infinite number of indivisibles. In fact, Oresme’s analysis opened the path to a completely new kind of mathematical continuity.</abstract><pub>Sociedad Española de Filosofía Medieval</pub><doi>10.21071/refime.v29i1.15137</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0902 |
ispartof | Revista española de filosofía medieval, 2022, Vol.29 (1), p.113-155 |
issn | 1133-0902 2530-7878 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001559648 |
source | Dialnet; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Continuidad Continuity Fluxus Theory History, Philosophy and Sociology of Sciences Humanities and Social Sciences Indivisibles infinitamente pequeño Infinitely Small matemáticas Mathematics Motion movimiento Nicole Oresme Ontology ontología res successiva teoría del fluxus |
title | Nicole Oresme on Motion and the Atomization of the Continuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nicole%20Oresme%20on%20Motion%20and%20the%20Atomization%20of%20the%20Continuum&rft.jtitle=Revista%20espa%C3%B1ola%20de%20filosof%C3%ADa%20medieval&rft.au=Debroise,%20Philippe&rft.date=2022&rft.volume=29&rft.issue=1&rft.spage=113&rft.epage=155&rft.pages=113-155&rft.issn=1133-0902&rft.eissn=2530-7878&rft_id=info:doi/10.21071/refime.v29i1.15137&rft_dat=%3Chal_dialn%3Eoai_HAL_hal_03867993v1%3C/hal_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |