Multi-Agent System Used for Recommendation of Historical and Cultural Memories
Abstract In this document the proposal of a recommendation system based on multi agent is made allowing the analysis of user behavior when visiting historical and cultural memories, giving recommendations based on qualifications and duration times for the observation of art pieces. It is also possib...
Gespeichert in:
Veröffentlicht in: | TECCIENCIA 2019-01, Vol.14 (26), p.43-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 26 |
container_start_page | 43 |
container_title | TECCIENCIA |
container_volume | 14 |
creator | Gelvez García, Nancy Yaneth Ballén Duarte, Andrés David Espitia Cuchango, Helbert Eduardo |
description | Abstract In this document the proposal of a recommendation system based on multi agent is made allowing the analysis of user behavior when visiting historical and cultural memories, giving recommendations based on qualifications and duration times for the observation of art pieces. It is also possible to see the system architecture, the server used for the development of the multi-agent system, as well as the communication between agents to carry out a route, and the functionality for recommending new routes to a user. The multi-agent system uses a neural network that allows to analyze the behavior of a user in a route; using the feedback given for the neural network the data is checked, allowing determine the user preferences. A set of historical and cultural memory data set is used to generate recommendations; in addition, a user storage API is employed. For the system visualization, this prototype is connected with an augmented reality application that allows users access to visit art pieces and use predefined preferences. |
doi_str_mv | 10.18180/tecciencia.2019.24.6 |
format | Article |
fullrecord | <record><control><sourceid>scielo_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001394483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1909_36672019000100043</scielo_id><sourcerecordid>S1909_36672019000100043</sourcerecordid><originalsourceid>FETCH-LOGICAL-d177t-84e8f5f507b1cb3fbc7e0a0f1c61496e028fb5a4325dec474f16fa26143c85cf3</originalsourceid><addsrcrecordid>eNo1kE1qwzAQRrVooSHNEQq6gF3Jkm0ZugmhbQpJC_lZC1keFQVbKpa8yO0rk3YxDPMNbxgeQk-U5FRQQZ4jaG3BaavygtAmL3he3aEFbUiTsaqqH9AqBNuSouCiSeECfe6nPtps_Q0u4uM1RBjwOUCHjR_xAbQfBnCditY77A3e2hD9aLXqsXId3iR4GtOwhyHFEB7RvVF9gNVfX6Lz2-tps812X-8fm_Uu62hdx0xwEKY0JalbqltmWl0DUcRQXVHeVEAKYdpScVaUHWhec0Mro4q0ZFqU2rAlernd7azqHUT5M9pBjVfplZX_2eTsaP1FSQhyfTgRQihrOBcs4fkND0lX7-XFT6NL_8rjrErOqmZ_M5GKM_YLlfZpuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Agent System Used for Recommendation of Historical and Cultural Memories</title><source>Dialnet</source><source>EZB Electronic Journals Library</source><creator>Gelvez García, Nancy Yaneth ; Ballén Duarte, Andrés David ; Espitia Cuchango, Helbert Eduardo</creator><creatorcontrib>Gelvez García, Nancy Yaneth ; Ballén Duarte, Andrés David ; Espitia Cuchango, Helbert Eduardo</creatorcontrib><description>Abstract In this document the proposal of a recommendation system based on multi agent is made allowing the analysis of user behavior when visiting historical and cultural memories, giving recommendations based on qualifications and duration times for the observation of art pieces. It is also possible to see the system architecture, the server used for the development of the multi-agent system, as well as the communication between agents to carry out a route, and the functionality for recommending new routes to a user. The multi-agent system uses a neural network that allows to analyze the behavior of a user in a route; using the feedback given for the neural network the data is checked, allowing determine the user preferences. A set of historical and cultural memory data set is used to generate recommendations; in addition, a user storage API is employed. For the system visualization, this prototype is connected with an augmented reality application that allows users access to visit art pieces and use predefined preferences.</description><identifier>ISSN: 1909-3667</identifier><identifier>ISSN: 2422-3670</identifier><identifier>DOI: 10.18180/tecciencia.2019.24.6</identifier><language>eng ; por</language><publisher>Universidad ECCI</publisher><subject>Agent ; API ; ENGINEERING, MULTIDISCIPLINARY ; Multi ; Multiagente ; Neuronal Network ; Recomendación ; Recommendation ; Red Neuronal ; Sistema ; SPADE ; System</subject><ispartof>TECCIENCIA, 2019-01, Vol.14 (26), p.43-52</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,874,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Gelvez García, Nancy Yaneth</creatorcontrib><creatorcontrib>Ballén Duarte, Andrés David</creatorcontrib><creatorcontrib>Espitia Cuchango, Helbert Eduardo</creatorcontrib><title>Multi-Agent System Used for Recommendation of Historical and Cultural Memories</title><title>TECCIENCIA</title><addtitle>Tecciencia</addtitle><description>Abstract In this document the proposal of a recommendation system based on multi agent is made allowing the analysis of user behavior when visiting historical and cultural memories, giving recommendations based on qualifications and duration times for the observation of art pieces. It is also possible to see the system architecture, the server used for the development of the multi-agent system, as well as the communication between agents to carry out a route, and the functionality for recommending new routes to a user. The multi-agent system uses a neural network that allows to analyze the behavior of a user in a route; using the feedback given for the neural network the data is checked, allowing determine the user preferences. A set of historical and cultural memory data set is used to generate recommendations; in addition, a user storage API is employed. For the system visualization, this prototype is connected with an augmented reality application that allows users access to visit art pieces and use predefined preferences.</description><subject>Agent</subject><subject>API</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>Multi</subject><subject>Multiagente</subject><subject>Neuronal Network</subject><subject>Recomendación</subject><subject>Recommendation</subject><subject>Red Neuronal</subject><subject>Sistema</subject><subject>SPADE</subject><subject>System</subject><issn>1909-3667</issn><issn>2422-3670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNo1kE1qwzAQRrVooSHNEQq6gF3Jkm0ZugmhbQpJC_lZC1keFQVbKpa8yO0rk3YxDPMNbxgeQk-U5FRQQZ4jaG3BaavygtAmL3he3aEFbUiTsaqqH9AqBNuSouCiSeECfe6nPtps_Q0u4uM1RBjwOUCHjR_xAbQfBnCditY77A3e2hD9aLXqsXId3iR4GtOwhyHFEB7RvVF9gNVfX6Lz2-tps812X-8fm_Uu62hdx0xwEKY0JalbqltmWl0DUcRQXVHeVEAKYdpScVaUHWhec0Mro4q0ZFqU2rAlernd7azqHUT5M9pBjVfplZX_2eTsaP1FSQhyfTgRQihrOBcs4fkND0lX7-XFT6NL_8rjrErOqmZ_M5GKM_YLlfZpuQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Gelvez García, Nancy Yaneth</creator><creator>Ballén Duarte, Andrés David</creator><creator>Espitia Cuchango, Helbert Eduardo</creator><general>Universidad ECCI</general><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20190101</creationdate><title>Multi-Agent System Used for Recommendation of Historical and Cultural Memories</title><author>Gelvez García, Nancy Yaneth ; Ballén Duarte, Andrés David ; Espitia Cuchango, Helbert Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d177t-84e8f5f507b1cb3fbc7e0a0f1c61496e028fb5a4325dec474f16fa26143c85cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2019</creationdate><topic>Agent</topic><topic>API</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>Multi</topic><topic>Multiagente</topic><topic>Neuronal Network</topic><topic>Recomendación</topic><topic>Recommendation</topic><topic>Red Neuronal</topic><topic>Sistema</topic><topic>SPADE</topic><topic>System</topic><toplevel>online_resources</toplevel><creatorcontrib>Gelvez García, Nancy Yaneth</creatorcontrib><creatorcontrib>Ballén Duarte, Andrés David</creatorcontrib><creatorcontrib>Espitia Cuchango, Helbert Eduardo</creatorcontrib><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>TECCIENCIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelvez García, Nancy Yaneth</au><au>Ballén Duarte, Andrés David</au><au>Espitia Cuchango, Helbert Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Agent System Used for Recommendation of Historical and Cultural Memories</atitle><jtitle>TECCIENCIA</jtitle><addtitle>Tecciencia</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>14</volume><issue>26</issue><spage>43</spage><epage>52</epage><pages>43-52</pages><issn>1909-3667</issn><issn>2422-3670</issn><abstract>Abstract In this document the proposal of a recommendation system based on multi agent is made allowing the analysis of user behavior when visiting historical and cultural memories, giving recommendations based on qualifications and duration times for the observation of art pieces. It is also possible to see the system architecture, the server used for the development of the multi-agent system, as well as the communication between agents to carry out a route, and the functionality for recommending new routes to a user. The multi-agent system uses a neural network that allows to analyze the behavior of a user in a route; using the feedback given for the neural network the data is checked, allowing determine the user preferences. A set of historical and cultural memory data set is used to generate recommendations; in addition, a user storage API is employed. For the system visualization, this prototype is connected with an augmented reality application that allows users access to visit art pieces and use predefined preferences.</abstract><pub>Universidad ECCI</pub><doi>10.18180/tecciencia.2019.24.6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1909-3667 |
ispartof | TECCIENCIA, 2019-01, Vol.14 (26), p.43-52 |
issn | 1909-3667 2422-3670 |
language | eng ; por |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001394483 |
source | Dialnet; EZB Electronic Journals Library |
subjects | Agent API ENGINEERING, MULTIDISCIPLINARY Multi Multiagente Neuronal Network Recomendación Recommendation Red Neuronal Sistema SPADE System |
title | Multi-Agent System Used for Recommendation of Historical and Cultural Memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Agent%20System%20Used%20for%20Recommendation%20of%20Historical%20and%20Cultural%20Memories&rft.jtitle=TECCIENCIA&rft.au=Gelvez%20Garc%C3%ADa,%20Nancy%20Yaneth&rft.date=2019-01-01&rft.volume=14&rft.issue=26&rft.spage=43&rft.epage=52&rft.pages=43-52&rft.issn=1909-3667&rft_id=info:doi/10.18180/tecciencia.2019.24.6&rft_dat=%3Cscielo_dialn%3ES1909_36672019000100043%3C/scielo_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S1909_36672019000100043&rfr_iscdi=true |