cubm package in R to fit CUB models

The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comunicaciones en Estadistica 2018-01, Vol.11 (2), p.219-238
Hauptverfasser: Barajas, Freddy Hernández, Usuga Manco, Olga Cecilia, García Muñoz, Sebastián
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 219
container_title Comunicaciones en Estadistica
container_volume 11
creator Barajas, Freddy Hernández
Usuga Manco, Olga Cecilia
García Muñoz, Sebastián
description The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study.
doi_str_mv 10.15332/2422474x.3857
format Article
fullrecord <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001306447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481621665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1655-ab8aba40012719d8bd2f7738aef135825b39830f052e14970633bcd18d6a2dd83</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWGqvngM9b00y-VrwUotWoSCU9hyym6yktpua7IL-967WeppheG_mzQ-hW0pmVACwO8YZ44p_zkALdYFGDKAsgCh5OfSEqQJAiGs0yXlHCAFGuCj1CE3rvjrgo63f7ZvHocVr3EXchA4vtg_4EJ3f5xt01dh99pO_Okbbp8fN4rlYvS5fFvNVUVMpRGErbSvLCaFM0dLpyrFGKdDWNxSEZqKCUgNpiGCe8lIRCVDVjmonLXNOwxjdn_a6YPet78wxhYNNXybaYM6zvg0pxJ01Ppv5ejP8QoFIztVgn57sxxQ_ep87s4t9aofEhnFNJaNSikE1O6nqFHNOvvm_Qon5RWnOKM0PSvgGw5Fibw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481621665</pqid></control><display><type>article</type><title>cubm package in R to fit CUB models</title><source>Dialnet</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Barajas, Freddy Hernández ; Usuga Manco, Olga Cecilia ; García Muñoz, Sebastián</creator><creatorcontrib>Barajas, Freddy Hernández ; Usuga Manco, Olga Cecilia ; García Muñoz, Sebastián</creatorcontrib><description>The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study.</description><identifier>ISSN: 2027-3355</identifier><identifier>ISSN: 2339-3076</identifier><identifier>EISSN: 2339-3076</identifier><identifier>DOI: 10.15332/2422474x.3857</identifier><language>eng</language><publisher>Bogotá: Universidad Santo Tomás de Colombia</publisher><subject>CUB models ; Feeling and uncertainty ; Ordinal data</subject><ispartof>Comunicaciones en Estadistica, 2018-01, Vol.11 (2), p.219-238</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1655-ab8aba40012719d8bd2f7738aef135825b39830f052e14970633bcd18d6a2dd83</citedby><orcidid>0000-0001-7459-3329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,874,27922,27923</link.rule.ids></links><search><creatorcontrib>Barajas, Freddy Hernández</creatorcontrib><creatorcontrib>Usuga Manco, Olga Cecilia</creatorcontrib><creatorcontrib>García Muñoz, Sebastián</creatorcontrib><title>cubm package in R to fit CUB models</title><title>Comunicaciones en Estadistica</title><description>The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study.</description><subject>CUB models</subject><subject>Feeling and uncertainty</subject><subject>Ordinal data</subject><issn>2027-3355</issn><issn>2339-3076</issn><issn>2339-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>FKZ</sourceid><recordid>eNo9kM1LAzEQxYMoWGqvngM9b00y-VrwUotWoSCU9hyym6yktpua7IL-967WeppheG_mzQ-hW0pmVACwO8YZ44p_zkALdYFGDKAsgCh5OfSEqQJAiGs0yXlHCAFGuCj1CE3rvjrgo63f7ZvHocVr3EXchA4vtg_4EJ3f5xt01dh99pO_Okbbp8fN4rlYvS5fFvNVUVMpRGErbSvLCaFM0dLpyrFGKdDWNxSEZqKCUgNpiGCe8lIRCVDVjmonLXNOwxjdn_a6YPet78wxhYNNXybaYM6zvg0pxJ01Ppv5ejP8QoFIztVgn57sxxQ_ep87s4t9aofEhnFNJaNSikE1O6nqFHNOvvm_Qon5RWnOKM0PSvgGw5Fibw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Barajas, Freddy Hernández</creator><creator>Usuga Manco, Olga Cecilia</creator><creator>García Muñoz, Sebastián</creator><general>Universidad Santo Tomás de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>AGMXS</scope><scope>FKZ</scope><orcidid>https://orcid.org/0000-0001-7459-3329</orcidid></search><sort><creationdate>20180101</creationdate><title>cubm package in R to fit CUB models</title><author>Barajas, Freddy Hernández ; Usuga Manco, Olga Cecilia ; García Muñoz, Sebastián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1655-ab8aba40012719d8bd2f7738aef135825b39830f052e14970633bcd18d6a2dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CUB models</topic><topic>Feeling and uncertainty</topic><topic>Ordinal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barajas, Freddy Hernández</creatorcontrib><creatorcontrib>Usuga Manco, Olga Cecilia</creatorcontrib><creatorcontrib>García Muñoz, Sebastián</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Comunicaciones en Estadistica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barajas, Freddy Hernández</au><au>Usuga Manco, Olga Cecilia</au><au>García Muñoz, Sebastián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>cubm package in R to fit CUB models</atitle><jtitle>Comunicaciones en Estadistica</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>2</issue><spage>219</spage><epage>238</epage><pages>219-238</pages><issn>2027-3355</issn><issn>2339-3076</issn><eissn>2339-3076</eissn><abstract>The class of CUB models is commonly used by practitioners to model ordinal data, in this paper we propose the cubm package which provides the class of CUB models in the R system for statistical computing. The cubm package allows to specify a formula for each parameter of the model, the Maximum Likelihood (ML) estimation is performed by optimization via the functions nlminb, optim and DEoptim and the variance-covariance matrix can be obtained by numerical approximation of the Hessian matrix or by bootstrap method. The utility of the package is illustrated by an application and a simulation study.</abstract><cop>Bogotá</cop><pub>Universidad Santo Tomás de Colombia</pub><doi>10.15332/2422474x.3857</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7459-3329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2027-3355
ispartof Comunicaciones en Estadistica, 2018-01, Vol.11 (2), p.219-238
issn 2027-3355
2339-3076
2339-3076
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001306447
source Dialnet; EZB-FREE-00999 freely available EZB journals
subjects CUB models
Feeling and uncertainty
Ordinal data
title cubm package in R to fit CUB models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=cubm%20package%20in%20R%20to%20fit%20CUB%20models&rft.jtitle=Comunicaciones%20en%20Estadistica&rft.au=Barajas,%20Freddy%20Hern%C3%A1ndez&rft.date=2018-01-01&rft.volume=11&rft.issue=2&rft.spage=219&rft.epage=238&rft.pages=219-238&rft.issn=2027-3355&rft.eissn=2339-3076&rft_id=info:doi/10.15332/2422474x.3857&rft_dat=%3Cproquest_dialn%3E2481621665%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481621665&rft_id=info:pmid/&rfr_iscdi=true