System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron
This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perc...
Gespeichert in:
Veröffentlicht in: | Ingeniería e investigación 2018-01, Vol.38 (1), p.113-120 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Ingeniería e investigación |
container_volume | 38 |
creator | Ruelas Santoyo, Edgar Augusto Vázquez López, José Antonio Yáñez Mendiola, Javier Baeza Serrato, Roberto Jiménez García, José Alfredo Sánchez Márquez, Juan |
description | This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost. |
doi_str_mv | 10.15446/ing.investig.v25n2.60265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001292172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057845405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2385-33e90035fadbd350bdf77420d0e1336c47710350aa124bd5f7d0d649747945e83</originalsourceid><addsrcrecordid>eNo9kVtr3DAQhUVoIMsm_0Ghz96ObpYNfQmhTQKBQC7PQrbHWwVb2kpywv77KLtNnwZmzswcvkPIJYMNU1LWP5zfbpx_w5TddvPGleebGnitTsiKc9lUjebiG1kB41CpGtozcpGS60DWGpgGuSLz0z5lnOkYIs1_kEbsw9a77IKnYaTvaCPd2Zwx-kRLb3Z9DCnHpc9LxPSp6W3syqScwSnRJRVT1NJ5mbKb7B7LPsYedzkGf05ORzslvPhX1-Tl96_n69vq_uHm7vrqvuq5aFQlBLYAQo126AahoBtGrSWHAZAJUfdSa1bGYC3jshvUqAcYatlqqVupsBFr8vN4d3B28pjNLrrZxr0J1pmv3uJddOHVGkzm6vEZoGBqOSvI1uT7cX0Xw9-l0DWvYYm-ODYclG6kkqCKqj2qPomkiOP_LwzMIR9TUJivfMwhH3PIR3wAYPiKZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057845405</pqid></control><display><type>article</type><title>System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ruelas Santoyo, Edgar Augusto ; Vázquez López, José Antonio ; Yáñez Mendiola, Javier ; Baeza Serrato, Roberto ; Jiménez García, José Alfredo ; Sánchez Márquez, Juan</creator><creatorcontrib>Ruelas Santoyo, Edgar Augusto ; Vázquez López, José Antonio ; Yáñez Mendiola, Javier ; Baeza Serrato, Roberto ; Jiménez García, José Alfredo ; Sánchez Márquez, Juan</creatorcontrib><description>This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost. </description><identifier>ISSN: 0120-5609</identifier><identifier>EISSN: 2248-8723</identifier><identifier>DOI: 10.15446/ing.investig.v25n2.60265</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Artificial Neural Network ; Artificial neural networks ; Carbon steels ; Conductors ; Cost analysis ; Decarburization ; Decarburizing ; defectos en material ; digital image processing ; Digital imaging ; Graphitization ; Image processing ; Inspection ; Laboratory equipment ; material defects ; Microstructure ; Multilayer perceptrons ; Neural networks ; Pattern recognition ; procesamiento digital de imagen ; Red neuronal artificial ; Testing laboratories ; Wear</subject><ispartof>Ingeniería e investigación, 2018-01, Vol.38 (1), p.113-120</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2385-33e90035fadbd350bdf77420d0e1336c47710350aa124bd5f7d0d649747945e83</citedby><cites>FETCH-LOGICAL-c2385-33e90035fadbd350bdf77420d0e1336c47710350aa124bd5f7d0d649747945e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,870,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ruelas Santoyo, Edgar Augusto</creatorcontrib><creatorcontrib>Vázquez López, José Antonio</creatorcontrib><creatorcontrib>Yáñez Mendiola, Javier</creatorcontrib><creatorcontrib>Baeza Serrato, Roberto</creatorcontrib><creatorcontrib>Jiménez García, José Alfredo</creatorcontrib><creatorcontrib>Sánchez Márquez, Juan</creatorcontrib><title>System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron</title><title>Ingeniería e investigación</title><description>This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost. </description><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Carbon steels</subject><subject>Conductors</subject><subject>Cost analysis</subject><subject>Decarburization</subject><subject>Decarburizing</subject><subject>defectos en material</subject><subject>digital image processing</subject><subject>Digital imaging</subject><subject>Graphitization</subject><subject>Image processing</subject><subject>Inspection</subject><subject>Laboratory equipment</subject><subject>material defects</subject><subject>Microstructure</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>procesamiento digital de imagen</subject><subject>Red neuronal artificial</subject><subject>Testing laboratories</subject><subject>Wear</subject><issn>0120-5609</issn><issn>2248-8723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>FKZ</sourceid><recordid>eNo9kVtr3DAQhUVoIMsm_0Ghz96ObpYNfQmhTQKBQC7PQrbHWwVb2kpywv77KLtNnwZmzswcvkPIJYMNU1LWP5zfbpx_w5TddvPGleebGnitTsiKc9lUjebiG1kB41CpGtozcpGS60DWGpgGuSLz0z5lnOkYIs1_kEbsw9a77IKnYaTvaCPd2Zwx-kRLb3Z9DCnHpc9LxPSp6W3syqScwSnRJRVT1NJ5mbKb7B7LPsYedzkGf05ORzslvPhX1-Tl96_n69vq_uHm7vrqvuq5aFQlBLYAQo126AahoBtGrSWHAZAJUfdSa1bGYC3jshvUqAcYatlqqVupsBFr8vN4d3B28pjNLrrZxr0J1pmv3uJddOHVGkzm6vEZoGBqOSvI1uT7cX0Xw9-l0DWvYYm-ODYclG6kkqCKqj2qPomkiOP_LwzMIR9TUJivfMwhH3PIR3wAYPiKZg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ruelas Santoyo, Edgar Augusto</creator><creator>Vázquez López, José Antonio</creator><creator>Yáñez Mendiola, Javier</creator><creator>Baeza Serrato, Roberto</creator><creator>Jiménez García, José Alfredo</creator><creator>Sánchez Márquez, Juan</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20180101</creationdate><title>System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron</title><author>Ruelas Santoyo, Edgar Augusto ; Vázquez López, José Antonio ; Yáñez Mendiola, Javier ; Baeza Serrato, Roberto ; Jiménez García, José Alfredo ; Sánchez Márquez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2385-33e90035fadbd350bdf77420d0e1336c47710350aa124bd5f7d0d649747945e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Carbon steels</topic><topic>Conductors</topic><topic>Cost analysis</topic><topic>Decarburization</topic><topic>Decarburizing</topic><topic>defectos en material</topic><topic>digital image processing</topic><topic>Digital imaging</topic><topic>Graphitization</topic><topic>Image processing</topic><topic>Inspection</topic><topic>Laboratory equipment</topic><topic>material defects</topic><topic>Microstructure</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>procesamiento digital de imagen</topic><topic>Red neuronal artificial</topic><topic>Testing laboratories</topic><topic>Wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruelas Santoyo, Edgar Augusto</creatorcontrib><creatorcontrib>Vázquez López, José Antonio</creatorcontrib><creatorcontrib>Yáñez Mendiola, Javier</creatorcontrib><creatorcontrib>Baeza Serrato, Roberto</creatorcontrib><creatorcontrib>Jiménez García, José Alfredo</creatorcontrib><creatorcontrib>Sánchez Márquez, Juan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Ingeniería e investigación</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruelas Santoyo, Edgar Augusto</au><au>Vázquez López, José Antonio</au><au>Yáñez Mendiola, Javier</au><au>Baeza Serrato, Roberto</au><au>Jiménez García, José Alfredo</au><au>Sánchez Márquez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron</atitle><jtitle>Ingeniería e investigación</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>38</volume><issue>1</issue><spage>113</spage><epage>120</epage><pages>113-120</pages><issn>0120-5609</issn><eissn>2248-8723</eissn><abstract>This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost. </abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/ing.investig.v25n2.60265</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0120-5609 |
ispartof | Ingeniería e investigación, 2018-01, Vol.38 (1), p.113-120 |
issn | 0120-5609 2248-8723 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001292172 |
source | Dialnet; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial Neural Network Artificial neural networks Carbon steels Conductors Cost analysis Decarburization Decarburizing defectos en material digital image processing Digital imaging Graphitization Image processing Inspection Laboratory equipment material defects Microstructure Multilayer perceptrons Neural networks Pattern recognition procesamiento digital de imagen Red neuronal artificial Testing laboratories Wear |
title | System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20for%20the%20recognition%20of%20wear%20patterns%20on%20microstructures%20of%20carbon%20steels%20using%20a%20multilayer%20perceptron&rft.jtitle=Ingenier%C3%ADa%20e%20investigaci%C3%B3n&rft.au=Ruelas%20Santoyo,%20Edgar%20Augusto&rft.date=2018-01-01&rft.volume=38&rft.issue=1&rft.spage=113&rft.epage=120&rft.pages=113-120&rft.issn=0120-5609&rft.eissn=2248-8723&rft_id=info:doi/10.15446/ing.investig.v25n2.60265&rft_dat=%3Cproquest_dialn%3E2057845405%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057845405&rft_id=info:pmid/&rfr_iscdi=true |