Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks

In this article a methodology for a medical diagnostic decision support system to assess knee injuries is proposed. Such methodology takes into account that these types of injuries are common and arise due to different causes. Therefore, the physician's diagnosis and treatment may lead to expen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ingeniería y universidad 2015, Vol.19 (1), p.51-66
Hauptverfasser: Herrera-González, Marcelo, Martínez-Hernández, Gustavo Adolfo, Rodríguez-Sotelo, José Luis, Avilés-Sánchez, Óscar Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 51
container_title Ingeniería y universidad
container_volume 19
creator Herrera-González, Marcelo
Martínez-Hernández, Gustavo Adolfo
Rodríguez-Sotelo, José Luis
Avilés-Sánchez, Óscar Fernando
description In this article a methodology for a medical diagnostic decision support system to assess knee injuries is proposed. Such methodology takes into account that these types of injuries are common and arise due to different causes. Therefore, the physician's diagnosis and treatment may lead to expensive and invasive tests depending on his medical criteria. This system uses a surface Electromyographic (sEMG) and goniometric signals that are processed with signal analysis methods in time-frequency space through a spectrogram and a wavelet transform. Artificial neural networks are used as a learning technique by having a multilayer perceptron. EMG signals were measured in four external and internal muscles associated to the joint through flexion and extension assessments. These tests also registered the goniometric measures of the sagittal plane. This system shows above 80% of effectiveness as a performance measure that makes it an objective measure leading to help the physician in his diagnosis.
doi_str_mv 10.11144/Javeriana.iyu19-1.kfsc
format Article
fullrecord <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000942436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0123_21262015000100003</scielo_id><sourcerecordid>2103855348</sourcerecordid><originalsourceid>FETCH-LOGICAL-d190t-fddd5f4726d11518ae2abae3bfce64d5a3a24125aa72f2b0854b1d8f007dd1713</originalsourceid><addsrcrecordid>eNpFkNtuEzEQhi1EJaLSZ8AS1xs8PuxB4iaKeqSA1LTXq9m1HdwmdrC9oFzz4ngJiLkZzWi-f2Z-Qt4BWwKAlB_u8IeJDj0u3XGCroLli03jK7LgDKDiTd29JgsGXFQceP2GXKTkBibrumNcqAX59ckbQ68mP2YXPO7oJmM2dL3DMmjdiHObPiXnt3QzRYujoZc7M-YY9sewjXj45kaKXtPr4F3YmxxLvXHbopXocKSfDfpEg6WrmGdBV3Z8MVP8k_LPEF_SW3Jmy7S5-JvPydPV5eP6prr_en27Xt1XGjqWK6u1VlY2vNYAClo0HAc0YrCjqaVWKJBL4Aqx4ZYPrFVyAN1axhqtoQFxTj6edHU5wpvcH6LbYzz2AV3_rzd5F114xt6kfvXwyEp0kktRF3x5wtPozC70z2GK85f9Zva3n_0tpqsCwEyJArw_AYcYvk8m5f8IByZapYRsxW96X4zz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103855348</pqid></control><display><type>article</type><title>Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks</title><source>Dialnet</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Herrera-González, Marcelo ; Martínez-Hernández, Gustavo Adolfo ; Rodríguez-Sotelo, José Luis ; Avilés-Sánchez, Óscar Fernando</creator><creatorcontrib>Herrera-González, Marcelo ; Martínez-Hernández, Gustavo Adolfo ; Rodríguez-Sotelo, José Luis ; Avilés-Sánchez, Óscar Fernando</creatorcontrib><description>In this article a methodology for a medical diagnostic decision support system to assess knee injuries is proposed. Such methodology takes into account that these types of injuries are common and arise due to different causes. Therefore, the physician's diagnosis and treatment may lead to expensive and invasive tests depending on his medical criteria. This system uses a surface Electromyographic (sEMG) and goniometric signals that are processed with signal analysis methods in time-frequency space through a spectrogram and a wavelet transform. Artificial neural networks are used as a learning technique by having a multilayer perceptron. EMG signals were measured in four external and internal muscles associated to the joint through flexion and extension assessments. These tests also registered the goniometric measures of the sagittal plane. This system shows above 80% of effectiveness as a performance measure that makes it an objective measure leading to help the physician in his diagnosis.</description><identifier>ISSN: 0123-2126</identifier><identifier>EISSN: 2011-2769</identifier><identifier>DOI: 10.11144/Javeriana.iyu19-1.kfsc</identifier><language>eng</language><publisher>Bogotá: Editorial Pontificia Universidad Javeriana</publisher><subject>ANN ; Archives &amp; records ; Artificial intelligence ; Artificial neural networks ; Biomechanics ; Biomedical engineering ; Classification ; Diagnosis ; Diagnostic systems ; Electromyography ; EMGS ; ENGINEERING, MULTIDISCIPLINARY ; goniometry ; goniometría ; Injuries ; Kinematics ; Kinesiology ; Knee ; knee injury ; lesión de rodilla ; Multilayer perceptrons ; Muscle function ; Muscles ; Pain ; Rehabilitation ; RNA ; sEMG ; Signal analysis ; Signal processing ; Sports injuries ; Studies ; Support systems ; transformada wavelet ; Wavelet analysis ; Wavelet Transform ; Wavelet transforms</subject><ispartof>Ingeniería y universidad, 2015, Vol.19 (1), p.51-66</ispartof><rights>2015. This work is licensed under (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,870,881,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Herrera-González, Marcelo</creatorcontrib><creatorcontrib>Martínez-Hernández, Gustavo Adolfo</creatorcontrib><creatorcontrib>Rodríguez-Sotelo, José Luis</creatorcontrib><creatorcontrib>Avilés-Sánchez, Óscar Fernando</creatorcontrib><title>Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks</title><title>Ingeniería y universidad</title><addtitle>Ing. Univ</addtitle><description>In this article a methodology for a medical diagnostic decision support system to assess knee injuries is proposed. Such methodology takes into account that these types of injuries are common and arise due to different causes. Therefore, the physician's diagnosis and treatment may lead to expensive and invasive tests depending on his medical criteria. This system uses a surface Electromyographic (sEMG) and goniometric signals that are processed with signal analysis methods in time-frequency space through a spectrogram and a wavelet transform. Artificial neural networks are used as a learning technique by having a multilayer perceptron. EMG signals were measured in four external and internal muscles associated to the joint through flexion and extension assessments. These tests also registered the goniometric measures of the sagittal plane. This system shows above 80% of effectiveness as a performance measure that makes it an objective measure leading to help the physician in his diagnosis.</description><subject>ANN</subject><subject>Archives &amp; records</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biomechanics</subject><subject>Biomedical engineering</subject><subject>Classification</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Electromyography</subject><subject>EMGS</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>goniometry</subject><subject>goniometría</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Kinesiology</subject><subject>Knee</subject><subject>knee injury</subject><subject>lesión de rodilla</subject><subject>Multilayer perceptrons</subject><subject>Muscle function</subject><subject>Muscles</subject><subject>Pain</subject><subject>Rehabilitation</subject><subject>RNA</subject><subject>sEMG</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Sports injuries</subject><subject>Studies</subject><subject>Support systems</subject><subject>transformada wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet Transform</subject><subject>Wavelet transforms</subject><issn>0123-2126</issn><issn>2011-2769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>FKZ</sourceid><recordid>eNpFkNtuEzEQhi1EJaLSZ8AS1xs8PuxB4iaKeqSA1LTXq9m1HdwmdrC9oFzz4ngJiLkZzWi-f2Z-Qt4BWwKAlB_u8IeJDj0u3XGCroLli03jK7LgDKDiTd29JgsGXFQceP2GXKTkBibrumNcqAX59ckbQ68mP2YXPO7oJmM2dL3DMmjdiHObPiXnt3QzRYujoZc7M-YY9sewjXj45kaKXtPr4F3YmxxLvXHbopXocKSfDfpEg6WrmGdBV3Z8MVP8k_LPEF_SW3Jmy7S5-JvPydPV5eP6prr_en27Xt1XGjqWK6u1VlY2vNYAClo0HAc0YrCjqaVWKJBL4Aqx4ZYPrFVyAN1axhqtoQFxTj6edHU5wpvcH6LbYzz2AV3_rzd5F114xt6kfvXwyEp0kktRF3x5wtPozC70z2GK85f9Zva3n_0tpqsCwEyJArw_AYcYvk8m5f8IByZapYRsxW96X4zz</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Herrera-González, Marcelo</creator><creator>Martínez-Hernández, Gustavo Adolfo</creator><creator>Rodríguez-Sotelo, José Luis</creator><creator>Avilés-Sánchez, Óscar Fernando</creator><general>Editorial Pontificia Universidad Javeriana</general><general>Pontificia Universidad Javeriana</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>2015</creationdate><title>Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks</title><author>Herrera-González, Marcelo ; Martínez-Hernández, Gustavo Adolfo ; Rodríguez-Sotelo, José Luis ; Avilés-Sánchez, Óscar Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d190t-fddd5f4726d11518ae2abae3bfce64d5a3a24125aa72f2b0854b1d8f007dd1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANN</topic><topic>Archives &amp; records</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biomechanics</topic><topic>Biomedical engineering</topic><topic>Classification</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Electromyography</topic><topic>EMGS</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>goniometry</topic><topic>goniometría</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Kinesiology</topic><topic>Knee</topic><topic>knee injury</topic><topic>lesión de rodilla</topic><topic>Multilayer perceptrons</topic><topic>Muscle function</topic><topic>Muscles</topic><topic>Pain</topic><topic>Rehabilitation</topic><topic>RNA</topic><topic>sEMG</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Sports injuries</topic><topic>Studies</topic><topic>Support systems</topic><topic>transformada wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet Transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-González, Marcelo</creatorcontrib><creatorcontrib>Martínez-Hernández, Gustavo Adolfo</creatorcontrib><creatorcontrib>Rodríguez-Sotelo, José Luis</creatorcontrib><creatorcontrib>Avilés-Sánchez, Óscar Fernando</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Ingeniería y universidad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-González, Marcelo</au><au>Martínez-Hernández, Gustavo Adolfo</au><au>Rodríguez-Sotelo, José Luis</au><au>Avilés-Sánchez, Óscar Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks</atitle><jtitle>Ingeniería y universidad</jtitle><addtitle>Ing. Univ</addtitle><date>2015</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>0123-2126</issn><eissn>2011-2769</eissn><abstract>In this article a methodology for a medical diagnostic decision support system to assess knee injuries is proposed. Such methodology takes into account that these types of injuries are common and arise due to different causes. Therefore, the physician's diagnosis and treatment may lead to expensive and invasive tests depending on his medical criteria. This system uses a surface Electromyographic (sEMG) and goniometric signals that are processed with signal analysis methods in time-frequency space through a spectrogram and a wavelet transform. Artificial neural networks are used as a learning technique by having a multilayer perceptron. EMG signals were measured in four external and internal muscles associated to the joint through flexion and extension assessments. These tests also registered the goniometric measures of the sagittal plane. This system shows above 80% of effectiveness as a performance measure that makes it an objective measure leading to help the physician in his diagnosis.</abstract><cop>Bogotá</cop><pub>Editorial Pontificia Universidad Javeriana</pub><doi>10.11144/Javeriana.iyu19-1.kfsc</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0123-2126
ispartof Ingeniería y universidad, 2015, Vol.19 (1), p.51-66
issn 0123-2126
2011-2769
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000942436
source Dialnet; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects ANN
Archives & records
Artificial intelligence
Artificial neural networks
Biomechanics
Biomedical engineering
Classification
Diagnosis
Diagnostic systems
Electromyography
EMGS
ENGINEERING, MULTIDISCIPLINARY
goniometry
goniometría
Injuries
Kinematics
Kinesiology
Knee
knee injury
lesión de rodilla
Multilayer perceptrons
Muscle function
Muscles
Pain
Rehabilitation
RNA
sEMG
Signal analysis
Signal processing
Sports injuries
Studies
Support systems
transformada wavelet
Wavelet analysis
Wavelet Transform
Wavelet transforms
title Knee Functional State Classification Using Surface Electromyographic and Goniometric Signals by Means of Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knee%20Functional%20State%20Classification%20Using%20Surface%20Electromyographic%20and%20Goniometric%20Signals%20by%20Means%20of%20Artificial%20Neural%20Networks&rft.jtitle=Ingenier%C3%ADa%20y%20universidad&rft.au=Herrera-Gonz%C3%A1lez,%20Marcelo&rft.date=2015&rft.volume=19&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=0123-2126&rft.eissn=2011-2769&rft_id=info:doi/10.11144/Javeriana.iyu19-1.kfsc&rft_dat=%3Cproquest_dialn%3E2103855348%3C/proquest_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103855348&rft_id=info:pmid/&rft_scielo_id=S0123_21262015000100003&rfr_iscdi=true