Adaptive filtering implemented over TMS320c6713 DSP platform for system identification
This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementat...
Gespeichert in:
Veröffentlicht in: | Iteckne 2014-12, Vol.11 (2), p.157-171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Iteckne |
container_volume | 11 |
creator | Jiménez-López, Fabián Rolando Pardo-Beainy, Camilo Ernesto Gutiérrez-Cáceres, Edgar Andrés |
description | This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy. |
doi_str_mv | 10.15332/iteckne.v11i2.726 |
format | Article |
fullrecord | <record><control><sourceid>scielo_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000759650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1692_17982014000200006</scielo_id><sourcerecordid>S1692_17982014000200006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ebb956ead41f831cf7b4a6ee3a02af2a1d8334bff9b8854ff8fd7ca9fb689d0e3</originalsourceid><addsrcrecordid>eNo9kdtKBDEMQIsouKg_4FN_YNa2mel0wJfFOyiKu_paOjOpROeytHXBv3fWVfOQQOAkIYexUynmsgBQZ5Sw-RhwvpGS1LxUeo_NFECVQW5gn82krlQmy8ocspMYqRagVaG0NDP2umjdOtEGuacuYaDhjVO_7rDHIWHLxw0GvnpYghKNLiXwy-UTX3cu-TH0fEo8fsWEPad2AshT4xKNwzE78K6LePJbj9jL9dXq4ja7f7y5u1jcZw1ISBnWdVVodG0uvQHZ-LLOnUYEJ5TzysnWAOS191VtTJF7b3xbNq7ytTZVKxCO2PlubkuuGzDZdaDehS87OrJ_vc-BAo3vzmK0i-eVmKIsKl2ICZ_v8NgQdqN9Hz_DMN1rl9uX2e3LlJD5BKgtpSdA7YAmjDEG9P8LpbA_MuyvDPsjw04y4BuwN38x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive filtering implemented over TMS320c6713 DSP platform for system identification</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jiménez-López, Fabián Rolando ; Pardo-Beainy, Camilo Ernesto ; Gutiérrez-Cáceres, Edgar Andrés</creator><creatorcontrib>Jiménez-López, Fabián Rolando ; Pardo-Beainy, Camilo Ernesto ; Gutiérrez-Cáceres, Edgar Andrés</creatorcontrib><description>This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy.</description><identifier>ISSN: 1692-1798</identifier><identifier>ISSN: 2339-3483</identifier><identifier>EISSN: 2339-3483</identifier><identifier>DOI: 10.15332/iteckne.v11i2.726</identifier><language>eng</language><publisher>Universidad Santo Tomás</publisher><subject>Adaptive Filtering ; Digital Signal Processor ; ENGINEERING, MULTIDISCIPLINARY ; LMS Algorithm ; Real Time Processing ; RLS Algorithm ; System Identification</subject><ispartof>Iteckne, 2014-12, Vol.11 (2), p.157-171</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-ebb956ead41f831cf7b4a6ee3a02af2a1d8334bff9b8854ff8fd7ca9fb689d0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,874,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiménez-López, Fabián Rolando</creatorcontrib><creatorcontrib>Pardo-Beainy, Camilo Ernesto</creatorcontrib><creatorcontrib>Gutiérrez-Cáceres, Edgar Andrés</creatorcontrib><title>Adaptive filtering implemented over TMS320c6713 DSP platform for system identification</title><title>Iteckne</title><addtitle>Iteckne</addtitle><description>This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy.</description><subject>Adaptive Filtering</subject><subject>Digital Signal Processor</subject><subject>ENGINEERING, MULTIDISCIPLINARY</subject><subject>LMS Algorithm</subject><subject>Real Time Processing</subject><subject>RLS Algorithm</subject><subject>System Identification</subject><issn>1692-1798</issn><issn>2339-3483</issn><issn>2339-3483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNo9kdtKBDEMQIsouKg_4FN_YNa2mel0wJfFOyiKu_paOjOpROeytHXBv3fWVfOQQOAkIYexUynmsgBQZ5Sw-RhwvpGS1LxUeo_NFECVQW5gn82krlQmy8ocspMYqRagVaG0NDP2umjdOtEGuacuYaDhjVO_7rDHIWHLxw0GvnpYghKNLiXwy-UTX3cu-TH0fEo8fsWEPad2AshT4xKNwzE78K6LePJbj9jL9dXq4ja7f7y5u1jcZw1ISBnWdVVodG0uvQHZ-LLOnUYEJ5TzysnWAOS191VtTJF7b3xbNq7ytTZVKxCO2PlubkuuGzDZdaDehS87OrJ_vc-BAo3vzmK0i-eVmKIsKl2ICZ_v8NgQdqN9Hz_DMN1rl9uX2e3LlJD5BKgtpSdA7YAmjDEG9P8LpbA_MuyvDPsjw04y4BuwN38x</recordid><startdate>20141231</startdate><enddate>20141231</enddate><creator>Jiménez-López, Fabián Rolando</creator><creator>Pardo-Beainy, Camilo Ernesto</creator><creator>Gutiérrez-Cáceres, Edgar Andrés</creator><general>Universidad Santo Tomás</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>20141231</creationdate><title>Adaptive filtering implemented over TMS320c6713 DSP platform for system identification</title><author>Jiménez-López, Fabián Rolando ; Pardo-Beainy, Camilo Ernesto ; Gutiérrez-Cáceres, Edgar Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ebb956ead41f831cf7b4a6ee3a02af2a1d8334bff9b8854ff8fd7ca9fb689d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive Filtering</topic><topic>Digital Signal Processor</topic><topic>ENGINEERING, MULTIDISCIPLINARY</topic><topic>LMS Algorithm</topic><topic>Real Time Processing</topic><topic>RLS Algorithm</topic><topic>System Identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-López, Fabián Rolando</creatorcontrib><creatorcontrib>Pardo-Beainy, Camilo Ernesto</creatorcontrib><creatorcontrib>Gutiérrez-Cáceres, Edgar Andrés</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Iteckne</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-López, Fabián Rolando</au><au>Pardo-Beainy, Camilo Ernesto</au><au>Gutiérrez-Cáceres, Edgar Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive filtering implemented over TMS320c6713 DSP platform for system identification</atitle><jtitle>Iteckne</jtitle><addtitle>Iteckne</addtitle><date>2014-12-31</date><risdate>2014</risdate><volume>11</volume><issue>2</issue><spage>157</spage><epage>171</epage><pages>157-171</pages><issn>1692-1798</issn><issn>2339-3483</issn><eissn>2339-3483</eissn><abstract>This paper presents the experimental development of software and hardware configuration to implement two adaptive algorithms: LMS (Least Mean Square) and RLS (Recursive Least Square), using TMS320C6713 DSP platform of Texas Instruments, for unknown systems identification. Methodology for implementation and validation analysis for the adaptive algorithms is described in detail for real-time systems identification applications, and the experimental results were evaluated in terms of performance criterions in time domain, frequency domain, computational complexity, and accuracy.</abstract><pub>Universidad Santo Tomás</pub><doi>10.15332/iteckne.v11i2.726</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1692-1798 |
ispartof | Iteckne, 2014-12, Vol.11 (2), p.157-171 |
issn | 1692-1798 2339-3483 2339-3483 |
language | eng |
recordid | cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000759650 |
source | Dialnet; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Adaptive Filtering Digital Signal Processor ENGINEERING, MULTIDISCIPLINARY LMS Algorithm Real Time Processing RLS Algorithm System Identification |
title | Adaptive filtering implemented over TMS320c6713 DSP platform for system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20filtering%20implemented%20over%20TMS320c6713%20DSP%20platform%20for%20system%20identification&rft.jtitle=Iteckne&rft.au=Jim%C3%A9nez-L%C3%B3pez,%20Fabi%C3%A1n%20Rolando&rft.date=2014-12-31&rft.volume=11&rft.issue=2&rft.spage=157&rft.epage=171&rft.pages=157-171&rft.issn=1692-1798&rft.eissn=2339-3483&rft_id=info:doi/10.15332/iteckne.v11i2.726&rft_dat=%3Cscielo_dialn%3ES1692_17982014000200006%3C/scielo_dialn%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S1692_17982014000200006&rfr_iscdi=true |