Design of inertial fusion implosions reaching the burning plasma regime

One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: A. L. Kritcher, C. V. Young, H. F. Robey, C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator A. L. Kritcher
C. V. Young
H. F. Robey
C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman
description One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.
doi_str_mv 10.7910/dvn/mpkq9m
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7910_dvn_mpkq9m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7910_dvn_mpkq9m</sourcerecordid><originalsourceid>FETCH-LOGICAL-d71m-1e2d3067ab13782fef4c09c6a57811a185c75f295bf455efc62389f4dd41612a3</originalsourceid><addsrcrecordid>eNotj81KxDAURrNxIaMbnyBroU5u0jTtUkYdhQE3sw-3-ekEm7QmHcG3d8q4-g58cOAQ8gDsSXXAtvYnbeP89d3FW7J_cSUMiU6ehuTyEnCk_lzClGiI8zitVGh2aE4hDXQ5Odqfc1p5HrFEvHxDiO6O3Hgci7v_3w05vr0ed-_V4XP_sXs-VFZBrMBxK1ijsAehWu6drw3rTINStQAIrTRKet7J3tdSOm8aLtrO19bW0ABHsSGPV63FBU1YnJ5ziJh_NTC9xulLnL7GiT8FEErO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Design of inertial fusion implosions reaching the burning plasma regime</title><source>DataCite</source><creator>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</creator><creatorcontrib>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</creatorcontrib><description>One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.</description><identifier>DOI: 10.7910/dvn/mpkq9m</identifier><language>eng</language><publisher>Harvard Dataverse</publisher><subject>burning plasma ; indirect-drive ; inertial confinement fusion ; National Ignition Facility ; Physics ; radiation hydrodynamic simulations</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7910/dvn/mpkq9m$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</creatorcontrib><title>Design of inertial fusion implosions reaching the burning plasma regime</title><description>One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.</description><subject>burning plasma</subject><subject>indirect-drive</subject><subject>inertial confinement fusion</subject><subject>National Ignition Facility</subject><subject>Physics</subject><subject>radiation hydrodynamic simulations</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotj81KxDAURrNxIaMbnyBroU5u0jTtUkYdhQE3sw-3-ekEm7QmHcG3d8q4-g58cOAQ8gDsSXXAtvYnbeP89d3FW7J_cSUMiU6ehuTyEnCk_lzClGiI8zitVGh2aE4hDXQ5Odqfc1p5HrFEvHxDiO6O3Hgci7v_3w05vr0ed-_V4XP_sXs-VFZBrMBxK1ijsAehWu6drw3rTINStQAIrTRKet7J3tdSOm8aLtrO19bW0ABHsSGPV63FBU1YnJ5ziJh_NTC9xulLnL7GiT8FEErO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</creator><general>Harvard Dataverse</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>Design of inertial fusion implosions reaching the burning plasma regime</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d71m-1e2d3067ab13782fef4c09c6a57811a185c75f295bf455efc62389f4dd41612a3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>burning plasma</topic><topic>indirect-drive</topic><topic>inertial confinement fusion</topic><topic>National Ignition Facility</topic><topic>Physics</topic><topic>radiation hydrodynamic simulations</topic><toplevel>online_resources</toplevel><creatorcontrib>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><aucorp>A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨Oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman</aucorp><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Design of inertial fusion implosions reaching the burning plasma regime</title><date>2022</date><risdate>2022</risdate><abstract>One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.</abstract><pub>Harvard Dataverse</pub><doi>10.7910/dvn/mpkq9m</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.7910/dvn/mpkq9m
ispartof
issn
language eng
recordid cdi_datacite_primary_10_7910_dvn_mpkq9m
source DataCite
subjects burning plasma
indirect-drive
inertial confinement fusion
National Ignition Facility
Physics
radiation hydrodynamic simulations
title Design of inertial fusion implosions reaching the burning plasma regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.date=2022&rft_id=info:doi/10.7910/dvn/mpkq9m&rft_dat=%3Cdatacite_PQ8%3E10_7910_dvn_mpkq9m%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true