Cryo2StructData : Trained Model and Data Splits (Small Subset)
This repository includes the trained transformer-based model for the small subset Cryo2StructData dataset, as well as the training and validation split files. These split files categorize density map EMD-IDs into low, medium, and high resolutions. The training and validation sets contain 1680 and 18...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Giri, Nabin Wang, Liguo Cheng, Jianlin |
description | This repository includes the trained transformer-based model for the small subset Cryo2StructData dataset, as well as the training and validation split files. These split files categorize density map EMD-IDs into low, medium, and high resolutions. The training and validation sets contain 1680 and 187 density maps, respectively, with a split ratio of 90:10. |
doi_str_mv | 10.7910/dvn/dtv4jf |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7910_dvn_dtv4jf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7910_dvn_dtv4jf</sourcerecordid><originalsourceid>FETCH-LOGICAL-d71f-cf4a62b303946b0af4e1a52df5480c489e8d65a5f406e7548783447f24bd76203</originalsourceid><addsrcrecordid>eNotj0FLwzAYhnPxINOLvyDHTahLmq9J60GQqlOYeGjv4Wu_BCpZN9JssH9vdZ5eeF94eB_G7qR4MJUUazqNa0on-PbX7KmO533epHjs0wsm5I-8jTiMjvjnnlzgOBL_G5pDGNLEl80OQ-DNsZtcWt2wK49hcrf_uWDt22tbv2fbr81H_bzNyEif9R5Q550SqgLdCfTgJBY5-QJK0UNZuZJ0gYUHoZ2ZS1MqAONz6MjoXKgFu79gaX7SD8nZQxx2GM9WCvvrZGcne3FSP4vIRQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Cryo2StructData : Trained Model and Data Splits (Small Subset)</title><source>DataCite</source><creator>Giri, Nabin ; Wang, Liguo ; Cheng, Jianlin</creator><creatorcontrib>Giri, Nabin ; Wang, Liguo ; Cheng, Jianlin</creatorcontrib><description>This repository includes the trained transformer-based model for the small subset Cryo2StructData dataset, as well as the training and validation split files. These split files categorize density map EMD-IDs into low, medium, and high resolutions. The training and validation sets contain 1680 and 187 density maps, respectively, with a split ratio of 90:10.</description><identifier>DOI: 10.7910/dvn/dtv4jf</identifier><language>eng</language><publisher>Harvard Dataverse</publisher><subject>Computer and Information Science ; cryo-electron microscopy ; Medicine, Health and Life Sciences ; Other</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0305-2853 ; 0000-0002-0251-3956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7910/dvn/dtv4jf$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Giri, Nabin</creatorcontrib><creatorcontrib>Wang, Liguo</creatorcontrib><creatorcontrib>Cheng, Jianlin</creatorcontrib><title>Cryo2StructData : Trained Model and Data Splits (Small Subset)</title><description>This repository includes the trained transformer-based model for the small subset Cryo2StructData dataset, as well as the training and validation split files. These split files categorize density map EMD-IDs into low, medium, and high resolutions. The training and validation sets contain 1680 and 187 density maps, respectively, with a split ratio of 90:10.</description><subject>Computer and Information Science</subject><subject>cryo-electron microscopy</subject><subject>Medicine, Health and Life Sciences</subject><subject>Other</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotj0FLwzAYhnPxINOLvyDHTahLmq9J60GQqlOYeGjv4Wu_BCpZN9JssH9vdZ5eeF94eB_G7qR4MJUUazqNa0on-PbX7KmO533epHjs0wsm5I-8jTiMjvjnnlzgOBL_G5pDGNLEl80OQ-DNsZtcWt2wK49hcrf_uWDt22tbv2fbr81H_bzNyEif9R5Q550SqgLdCfTgJBY5-QJK0UNZuZJ0gYUHoZ2ZS1MqAONz6MjoXKgFu79gaX7SD8nZQxx2GM9WCvvrZGcne3FSP4vIRQA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Giri, Nabin</creator><creator>Wang, Liguo</creator><creator>Cheng, Jianlin</creator><general>Harvard Dataverse</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-0305-2853</orcidid><orcidid>https://orcid.org/0000-0002-0251-3956</orcidid></search><sort><creationdate>2023</creationdate><title>Cryo2StructData : Trained Model and Data Splits (Small Subset)</title><author>Giri, Nabin ; Wang, Liguo ; Cheng, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d71f-cf4a62b303946b0af4e1a52df5480c489e8d65a5f406e7548783447f24bd76203</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer and Information Science</topic><topic>cryo-electron microscopy</topic><topic>Medicine, Health and Life Sciences</topic><topic>Other</topic><toplevel>online_resources</toplevel><creatorcontrib>Giri, Nabin</creatorcontrib><creatorcontrib>Wang, Liguo</creatorcontrib><creatorcontrib>Cheng, Jianlin</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giri, Nabin</au><au>Wang, Liguo</au><au>Cheng, Jianlin</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Cryo2StructData : Trained Model and Data Splits (Small Subset)</title><date>2023</date><risdate>2023</risdate><abstract>This repository includes the trained transformer-based model for the small subset Cryo2StructData dataset, as well as the training and validation split files. These split files categorize density map EMD-IDs into low, medium, and high resolutions. The training and validation sets contain 1680 and 187 density maps, respectively, with a split ratio of 90:10.</abstract><pub>Harvard Dataverse</pub><doi>10.7910/dvn/dtv4jf</doi><orcidid>https://orcid.org/0000-0003-0305-2853</orcidid><orcidid>https://orcid.org/0000-0002-0251-3956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.7910/dvn/dtv4jf |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_7910_dvn_dtv4jf |
source | DataCite |
subjects | Computer and Information Science cryo-electron microscopy Medicine, Health and Life Sciences Other |
title | Cryo2StructData : Trained Model and Data Splits (Small Subset) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Giri,%20Nabin&rft.date=2023&rft_id=info:doi/10.7910/dvn/dtv4jf&rft_dat=%3Cdatacite_PQ8%3E10_7910_dvn_dtv4jf%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |