DISMISS: Database of Indian Social Media Influencers on Twitter
Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Arya, Arshia Mishra, Dibyendu Shekhawat, Gazal Sharma, Ankur Panda, Anmol M Lalani, Faisal Singh, Parantak Kommiya Mothilal, Ramaravind Grover, Rynaa Nishal, Sachita Dash, Saloni Rashid Shora, Shehla Akbar, Syeda Zainab Pal, Joyojeet |
description | Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc. |
doi_str_mv | 10.7910/dvn/bpy2jy |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7910_dvn_bpy2jy</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7910_dvn_bpy2jy</sourcerecordid><originalsourceid>FETCH-LOGICAL-d71y-4589f3afbdda1eef651b00a421b01f9f60bd65cdff63b7f95c91324f5fbdcbd23</originalsourceid><addsrcrecordid>eNotj09LxDAUxHPxIKsXP0HOQt2kaVrjRWTXP4VdPLT38JKXB5GaLm1V-u2NrKdhBmaYH2M3Utw1RootfqetO63lx3rJHvdtd2y77oHvYQEHc-Aj8TZhhMS70UcY-DFklzMavkLyYZr5mHj_E5clTFfsgmCYw_W_blj_8tzv3orD-2u7ezoU2Mi1qPS9IQXkEEGGQLWWTgioyiySDNXCYa09EtXKNWS0N1KVFenc8A5LtWG351nML31cgj1N8ROm1Uph_6BshrJnKPULXp5HnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><source>DataCite</source><creator>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet</creator><creatorcontrib>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet ; De, Soham</creatorcontrib><description>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</description><identifier>DOI: 10.7910/dvn/bpy2jy</identifier><language>eng</language><publisher>Harvard Dataverse</publisher><subject>Computer and Information Science ; Twitter Dataset</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7910/dvn/bpy2jy$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Arya, Arshia</creatorcontrib><creatorcontrib>Mishra, Dibyendu</creatorcontrib><creatorcontrib>Shekhawat, Gazal</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Panda, Anmol</creatorcontrib><creatorcontrib>M Lalani, Faisal</creatorcontrib><creatorcontrib>Singh, Parantak</creatorcontrib><creatorcontrib>Kommiya Mothilal, Ramaravind</creatorcontrib><creatorcontrib>Grover, Rynaa</creatorcontrib><creatorcontrib>Nishal, Sachita</creatorcontrib><creatorcontrib>Dash, Saloni</creatorcontrib><creatorcontrib>Rashid Shora, Shehla</creatorcontrib><creatorcontrib>Akbar, Syeda Zainab</creatorcontrib><creatorcontrib>Pal, Joyojeet</creatorcontrib><creatorcontrib>De, Soham</creatorcontrib><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><description>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</description><subject>Computer and Information Science</subject><subject>Twitter Dataset</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotj09LxDAUxHPxIKsXP0HOQt2kaVrjRWTXP4VdPLT38JKXB5GaLm1V-u2NrKdhBmaYH2M3Utw1RootfqetO63lx3rJHvdtd2y77oHvYQEHc-Aj8TZhhMS70UcY-DFklzMavkLyYZr5mHj_E5clTFfsgmCYw_W_blj_8tzv3orD-2u7ezoU2Mi1qPS9IQXkEEGGQLWWTgioyiySDNXCYa09EtXKNWS0N1KVFenc8A5LtWG351nML31cgj1N8ROm1Uph_6BshrJnKPULXp5HnA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Arya, Arshia</creator><creator>Mishra, Dibyendu</creator><creator>Shekhawat, Gazal</creator><creator>Sharma, Ankur</creator><creator>Panda, Anmol</creator><creator>M Lalani, Faisal</creator><creator>Singh, Parantak</creator><creator>Kommiya Mothilal, Ramaravind</creator><creator>Grover, Rynaa</creator><creator>Nishal, Sachita</creator><creator>Dash, Saloni</creator><creator>Rashid Shora, Shehla</creator><creator>Akbar, Syeda Zainab</creator><creator>Pal, Joyojeet</creator><general>Harvard Dataverse</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><author>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d71y-4589f3afbdda1eef651b00a421b01f9f60bd65cdff63b7f95c91324f5fbdcbd23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer and Information Science</topic><topic>Twitter Dataset</topic><toplevel>online_resources</toplevel><creatorcontrib>Arya, Arshia</creatorcontrib><creatorcontrib>Mishra, Dibyendu</creatorcontrib><creatorcontrib>Shekhawat, Gazal</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Panda, Anmol</creatorcontrib><creatorcontrib>M Lalani, Faisal</creatorcontrib><creatorcontrib>Singh, Parantak</creatorcontrib><creatorcontrib>Kommiya Mothilal, Ramaravind</creatorcontrib><creatorcontrib>Grover, Rynaa</creatorcontrib><creatorcontrib>Nishal, Sachita</creatorcontrib><creatorcontrib>Dash, Saloni</creatorcontrib><creatorcontrib>Rashid Shora, Shehla</creatorcontrib><creatorcontrib>Akbar, Syeda Zainab</creatorcontrib><creatorcontrib>Pal, Joyojeet</creatorcontrib><creatorcontrib>De, Soham</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arya, Arshia</au><au>Mishra, Dibyendu</au><au>Shekhawat, Gazal</au><au>Sharma, Ankur</au><au>Panda, Anmol</au><au>M Lalani, Faisal</au><au>Singh, Parantak</au><au>Kommiya Mothilal, Ramaravind</au><au>Grover, Rynaa</au><au>Nishal, Sachita</au><au>Dash, Saloni</au><au>Rashid Shora, Shehla</au><au>Akbar, Syeda Zainab</au><au>Pal, Joyojeet</au><aucorp>De, Soham</aucorp><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><date>2022</date><risdate>2022</risdate><abstract>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</abstract><pub>Harvard Dataverse</pub><doi>10.7910/dvn/bpy2jy</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.7910/dvn/bpy2jy |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_7910_dvn_bpy2jy |
source | DataCite |
subjects | Computer and Information Science Twitter Dataset |
title | DISMISS: Database of Indian Social Media Influencers on Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Arya,%20Arshia&rft.aucorp=De,%20Soham&rft.date=2022&rft_id=info:doi/10.7910/dvn/bpy2jy&rft_dat=%3Cdatacite_PQ8%3E10_7910_dvn_bpy2jy%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |