DISMISS: Database of Indian Social Media Influencers on Twitter

Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arya, Arshia, Mishra, Dibyendu, Shekhawat, Gazal, Sharma, Ankur, Panda, Anmol, M Lalani, Faisal, Singh, Parantak, Kommiya Mothilal, Ramaravind, Grover, Rynaa, Nishal, Sachita, Dash, Saloni, Rashid Shora, Shehla, Akbar, Syeda Zainab, Pal, Joyojeet
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Arya, Arshia
Mishra, Dibyendu
Shekhawat, Gazal
Sharma, Ankur
Panda, Anmol
M Lalani, Faisal
Singh, Parantak
Kommiya Mothilal, Ramaravind
Grover, Rynaa
Nishal, Sachita
Dash, Saloni
Rashid Shora, Shehla
Akbar, Syeda Zainab
Pal, Joyojeet
description Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.
doi_str_mv 10.7910/dvn/bpy2jy
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7910_dvn_bpy2jy</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7910_dvn_bpy2jy</sourcerecordid><originalsourceid>FETCH-LOGICAL-d71y-4589f3afbdda1eef651b00a421b01f9f60bd65cdff63b7f95c91324f5fbdcbd23</originalsourceid><addsrcrecordid>eNotj09LxDAUxHPxIKsXP0HOQt2kaVrjRWTXP4VdPLT38JKXB5GaLm1V-u2NrKdhBmaYH2M3Utw1RootfqetO63lx3rJHvdtd2y77oHvYQEHc-Aj8TZhhMS70UcY-DFklzMavkLyYZr5mHj_E5clTFfsgmCYw_W_blj_8tzv3orD-2u7ezoU2Mi1qPS9IQXkEEGGQLWWTgioyiySDNXCYa09EtXKNWS0N1KVFenc8A5LtWG351nML31cgj1N8ROm1Uph_6BshrJnKPULXp5HnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><source>DataCite</source><creator>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet</creator><creatorcontrib>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet ; De, Soham</creatorcontrib><description>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</description><identifier>DOI: 10.7910/dvn/bpy2jy</identifier><language>eng</language><publisher>Harvard Dataverse</publisher><subject>Computer and Information Science ; Twitter Dataset</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7910/dvn/bpy2jy$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Arya, Arshia</creatorcontrib><creatorcontrib>Mishra, Dibyendu</creatorcontrib><creatorcontrib>Shekhawat, Gazal</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Panda, Anmol</creatorcontrib><creatorcontrib>M Lalani, Faisal</creatorcontrib><creatorcontrib>Singh, Parantak</creatorcontrib><creatorcontrib>Kommiya Mothilal, Ramaravind</creatorcontrib><creatorcontrib>Grover, Rynaa</creatorcontrib><creatorcontrib>Nishal, Sachita</creatorcontrib><creatorcontrib>Dash, Saloni</creatorcontrib><creatorcontrib>Rashid Shora, Shehla</creatorcontrib><creatorcontrib>Akbar, Syeda Zainab</creatorcontrib><creatorcontrib>Pal, Joyojeet</creatorcontrib><creatorcontrib>De, Soham</creatorcontrib><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><description>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</description><subject>Computer and Information Science</subject><subject>Twitter Dataset</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotj09LxDAUxHPxIKsXP0HOQt2kaVrjRWTXP4VdPLT38JKXB5GaLm1V-u2NrKdhBmaYH2M3Utw1RootfqetO63lx3rJHvdtd2y77oHvYQEHc-Aj8TZhhMS70UcY-DFklzMavkLyYZr5mHj_E5clTFfsgmCYw_W_blj_8tzv3orD-2u7ezoU2Mi1qPS9IQXkEEGGQLWWTgioyiySDNXCYa09EtXKNWS0N1KVFenc8A5LtWG351nML31cgj1N8ROm1Uph_6BshrJnKPULXp5HnA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Arya, Arshia</creator><creator>Mishra, Dibyendu</creator><creator>Shekhawat, Gazal</creator><creator>Sharma, Ankur</creator><creator>Panda, Anmol</creator><creator>M Lalani, Faisal</creator><creator>Singh, Parantak</creator><creator>Kommiya Mothilal, Ramaravind</creator><creator>Grover, Rynaa</creator><creator>Nishal, Sachita</creator><creator>Dash, Saloni</creator><creator>Rashid Shora, Shehla</creator><creator>Akbar, Syeda Zainab</creator><creator>Pal, Joyojeet</creator><general>Harvard Dataverse</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><author>Arya, Arshia ; Mishra, Dibyendu ; Shekhawat, Gazal ; Sharma, Ankur ; Panda, Anmol ; M Lalani, Faisal ; Singh, Parantak ; Kommiya Mothilal, Ramaravind ; Grover, Rynaa ; Nishal, Sachita ; Dash, Saloni ; Rashid Shora, Shehla ; Akbar, Syeda Zainab ; Pal, Joyojeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d71y-4589f3afbdda1eef651b00a421b01f9f60bd65cdff63b7f95c91324f5fbdcbd23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer and Information Science</topic><topic>Twitter Dataset</topic><toplevel>online_resources</toplevel><creatorcontrib>Arya, Arshia</creatorcontrib><creatorcontrib>Mishra, Dibyendu</creatorcontrib><creatorcontrib>Shekhawat, Gazal</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Panda, Anmol</creatorcontrib><creatorcontrib>M Lalani, Faisal</creatorcontrib><creatorcontrib>Singh, Parantak</creatorcontrib><creatorcontrib>Kommiya Mothilal, Ramaravind</creatorcontrib><creatorcontrib>Grover, Rynaa</creatorcontrib><creatorcontrib>Nishal, Sachita</creatorcontrib><creatorcontrib>Dash, Saloni</creatorcontrib><creatorcontrib>Rashid Shora, Shehla</creatorcontrib><creatorcontrib>Akbar, Syeda Zainab</creatorcontrib><creatorcontrib>Pal, Joyojeet</creatorcontrib><creatorcontrib>De, Soham</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arya, Arshia</au><au>Mishra, Dibyendu</au><au>Shekhawat, Gazal</au><au>Sharma, Ankur</au><au>Panda, Anmol</au><au>M Lalani, Faisal</au><au>Singh, Parantak</au><au>Kommiya Mothilal, Ramaravind</au><au>Grover, Rynaa</au><au>Nishal, Sachita</au><au>Dash, Saloni</au><au>Rashid Shora, Shehla</au><au>Akbar, Syeda Zainab</au><au>Pal, Joyojeet</au><aucorp>De, Soham</aucorp><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>DISMISS: Database of Indian Social Media Influencers on Twitter</title><date>2022</date><risdate>2022</risdate><abstract>Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in India, identified and annotated through an iterative process of friends, networks, and self-described profile information, verified manually. We built an initial set of accounts based on the friend network of a seed set of accounts based on real-world renown in various fields, and then snowballed ``friends of friends" multiple times, and rank ordered individuals based on the number of in-group connections, and overall followers. We then manually classified identified accounts under the categories of entertainment, sports, business, government, institutions, journalism, civil society accounts that have independent standing outside of social media, as well as a category of ``digital first" referring to accounts that derive their primary influence from online activity. Overall, we annotated 11580 unique accounts across all categories. The database is useful studying various questions related to the role of influencers in polarisation, misinformation, extreme speech, political discourse etc.</abstract><pub>Harvard Dataverse</pub><doi>10.7910/dvn/bpy2jy</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.7910/dvn/bpy2jy
ispartof
issn
language eng
recordid cdi_datacite_primary_10_7910_dvn_bpy2jy
source DataCite
subjects Computer and Information Science
Twitter Dataset
title DISMISS: Database of Indian Social Media Influencers on Twitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Arya,%20Arshia&rft.aucorp=De,%20Soham&rft.date=2022&rft_id=info:doi/10.7910/dvn/bpy2jy&rft_dat=%3Cdatacite_PQ8%3E10_7910_dvn_bpy2jy%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true