Replication Data for 'Big G'

The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. *** *** PART 1: Five Facts on Government spending *** *** Folder: FiveFacts This folder contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cox, Lydia, Mueller, Gernot, Pasten, Ernesto, Schoenle, Raphael, Weber, Michael
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cox, Lydia
Mueller, Gernot
Pasten, Ernesto
Schoenle, Raphael
Weber, Michael
description The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. *** *** PART 1: Five Facts on Government spending *** *** Folder: FiveFacts This folder contains code to replicate Figures 1-4 and Tables 1-4 in Section 3 of the paper. ____________ Data Set-Up ____________ In order to run the included script files, the main dataset needs to be assembled. The data on federal procurement contracts used in this paper is all publicly available from USASpending.gov. The base dataset used for all of the empirical results in this paper consists of the universe of procurement contract transactions from 2001-2019---around 30 GB of data. Due to its size, the data requires a substantial amount of computing power to work with. Our approach was to load the data into a SQL database on a server, following the instructions provided by USASpending.gov, which can be found here: https://files.usaspending.gov/database_download/usaspending-db-setup.pdf. As a result, the replication code cannot feasibly start with the raw dataset, though we have provided the raw files at an annual basis at [INSERT URL FOR SITE HERE]. The files "setup_data_1.R", "setup_data_2.R", "setup_data_3.R", and "setup_data_4.R" pull from the SQL database and create intermediate files that are provided with this replication package. You will NOT be able to run the "set_up" files without setting up your own SQL database, but you CAN run the Figure and Table replication code (described below) using the intermediate files created in the setup files. _______________ Figures _______________ Figure 1 + Step 1: Run 'create_contract_proxy.R,' which creates a dataset called 'contracts_for_ramey_merge.dta' + Step 2: Run ramey_zubairy_replication.do, which is a file TAKEN DIRECTLY FROM THE REPLICATION PACKAGE for Ramey & Zubairy (JPE, 2018), found at the link below. We merge our dataset into theirs, and re-run their regressions on our data. Ramey & Zubairy (2018) replication: https://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. Figure 2 + 'Figure_2a.R' produces Figure 2a using 'intermediate_file_1.RData' + 'Figure_2b.R' produces Figure 2b using 'intermediate_file_2.RData' Figure 3 + 'Figure_3a.R' produces Figure 3a using 'intermediate_file_3.RData' + 'Figure_3b.R' produces Figure 3b using 'intermediate_file_2.RData' Figure 4 + 'Figure_4.R' produces Figures 4a and 4b
doi_str_mv 10.7910/dvn/8rcmzp
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7910_dvn_8rcmzp</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7910_dvn_8rcmzp</sourcerecordid><originalsourceid>FETCH-LOGICAL-d71p-73c40a0f585800b6bbf6793576235bf475612cade0fdb8ad203422ad54db871f3</originalsourceid><addsrcrecordid>eNotzj0LwjAYBOAsDlJdnB26FYTqm6Rp2tFvBUEQ9_AmaSSgtsQi6K-3otNxy91DyIjCVJYUZvZ5nxXB3N5Nn4xPVXP1Bltf3-MVthi7OsTJwl_ibTIgPYfXRzX8Z0TOm_V5uUsPx-1-OT-kVtImldxkgOBEIQoAnWvtcllyIXPGhXaZFDllBm0FzuoCLQOeMYZWZF2V1PGITH6ztvs3vq1UE_wNw0tRUF-x6sTqJ-YfkBw5OQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Replication Data for 'Big G'</title><source>DataCite</source><creator>Cox, Lydia ; Mueller, Gernot ; Pasten, Ernesto ; Schoenle, Raphael ; Weber, Michael</creator><creatorcontrib>Cox, Lydia ; Mueller, Gernot ; Pasten, Ernesto ; Schoenle, Raphael ; Weber, Michael</creatorcontrib><description>The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. *** *** PART 1: Five Facts on Government spending *** *** Folder: FiveFacts This folder contains code to replicate Figures 1-4 and Tables 1-4 in Section 3 of the paper. ____________ Data Set-Up ____________ In order to run the included script files, the main dataset needs to be assembled. The data on federal procurement contracts used in this paper is all publicly available from USASpending.gov. The base dataset used for all of the empirical results in this paper consists of the universe of procurement contract transactions from 2001-2019---around 30 GB of data. Due to its size, the data requires a substantial amount of computing power to work with. Our approach was to load the data into a SQL database on a server, following the instructions provided by USASpending.gov, which can be found here: https://files.usaspending.gov/database_download/usaspending-db-setup.pdf. As a result, the replication code cannot feasibly start with the raw dataset, though we have provided the raw files at an annual basis at [INSERT URL FOR SITE HERE]. The files "setup_data_1.R", "setup_data_2.R", "setup_data_3.R", and "setup_data_4.R" pull from the SQL database and create intermediate files that are provided with this replication package. You will NOT be able to run the "set_up" files without setting up your own SQL database, but you CAN run the Figure and Table replication code (described below) using the intermediate files created in the setup files. _______________ Figures _______________ Figure 1 + Step 1: Run 'create_contract_proxy.R,' which creates a dataset called 'contracts_for_ramey_merge.dta' + Step 2: Run ramey_zubairy_replication.do, which is a file TAKEN DIRECTLY FROM THE REPLICATION PACKAGE for Ramey &amp; Zubairy (JPE, 2018), found at the link below. We merge our dataset into theirs, and re-run their regressions on our data. Ramey &amp; Zubairy (2018) replication: https://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. Figure 2 + 'Figure_2a.R' produces Figure 2a using 'intermediate_file_1.RData' + 'Figure_2b.R' produces Figure 2b using 'intermediate_file_2.RData' Figure 3 + 'Figure_3a.R' produces Figure 3a using 'intermediate_file_3.RData' + 'Figure_3b.R' produces Figure 3b using 'intermediate_file_2.RData' Figure 4 + 'Figure_4.R' produces Figures 4a and 4b using 'intermediate_file_3.RData' _______________ Tables _______________ Table 1 + 'Table_1.do' produces Table 1 using 'contracts_for_ramey_merge.dta' Table 2 + 'Table_2_upper' produces the top portion of Table 2 using the 'sectors_unbalanced.dta' file created in 'setup_data_4.R' + 'Table_2_lower' produces the lower portion of Table 2 using the 'firms_unbalanced.dta' file created in 'setup_data_4.R' Table 3 + 'Table_3.R' produces Table 3 using 'intermediate_file_1.RData'. Table 4 + Components for Table 4 can be found in 'Figure_3a.R' and 'Figure_3b.R' (noted in those files). *** *** PART 2: Model Simulation *** *** Folder: "ModelSimulation" + Matlab file MAIN_generateIRFs.m generates Figures 5 and 6 in the paper. It calls the mod file modelG.mod + Matlab file MAIN_generateIRFs_htm.m generates Figure A.21 in the Appendix. It calls the mod file modelG_htm.mod + Both files run on Dynare 5.4. *** *** PART 3: VAR *** *** Folder: "VAR" (see README in VAR folder for more detail). Data Setup: "setup_var_data.R," like the files in the FiveFacts folder, will not run. They create a dataset of contracts by month and naics2 sector from the SQL database. + 'VAR.do' runs the VAR that produces Figure 7.</description><identifier>DOI: 10.7910/dvn/8rcmzp</identifier><language>eng</language><publisher>Harvard Dataverse</publisher><subject>Social Sciences</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7910/dvn/8rcmzp$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cox, Lydia</creatorcontrib><creatorcontrib>Mueller, Gernot</creatorcontrib><creatorcontrib>Pasten, Ernesto</creatorcontrib><creatorcontrib>Schoenle, Raphael</creatorcontrib><creatorcontrib>Weber, Michael</creatorcontrib><title>Replication Data for 'Big G'</title><description>The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. *** *** PART 1: Five Facts on Government spending *** *** Folder: FiveFacts This folder contains code to replicate Figures 1-4 and Tables 1-4 in Section 3 of the paper. ____________ Data Set-Up ____________ In order to run the included script files, the main dataset needs to be assembled. The data on federal procurement contracts used in this paper is all publicly available from USASpending.gov. The base dataset used for all of the empirical results in this paper consists of the universe of procurement contract transactions from 2001-2019---around 30 GB of data. Due to its size, the data requires a substantial amount of computing power to work with. Our approach was to load the data into a SQL database on a server, following the instructions provided by USASpending.gov, which can be found here: https://files.usaspending.gov/database_download/usaspending-db-setup.pdf. As a result, the replication code cannot feasibly start with the raw dataset, though we have provided the raw files at an annual basis at [INSERT URL FOR SITE HERE]. The files "setup_data_1.R", "setup_data_2.R", "setup_data_3.R", and "setup_data_4.R" pull from the SQL database and create intermediate files that are provided with this replication package. You will NOT be able to run the "set_up" files without setting up your own SQL database, but you CAN run the Figure and Table replication code (described below) using the intermediate files created in the setup files. _______________ Figures _______________ Figure 1 + Step 1: Run 'create_contract_proxy.R,' which creates a dataset called 'contracts_for_ramey_merge.dta' + Step 2: Run ramey_zubairy_replication.do, which is a file TAKEN DIRECTLY FROM THE REPLICATION PACKAGE for Ramey &amp; Zubairy (JPE, 2018), found at the link below. We merge our dataset into theirs, and re-run their regressions on our data. Ramey &amp; Zubairy (2018) replication: https://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. Figure 2 + 'Figure_2a.R' produces Figure 2a using 'intermediate_file_1.RData' + 'Figure_2b.R' produces Figure 2b using 'intermediate_file_2.RData' Figure 3 + 'Figure_3a.R' produces Figure 3a using 'intermediate_file_3.RData' + 'Figure_3b.R' produces Figure 3b using 'intermediate_file_2.RData' Figure 4 + 'Figure_4.R' produces Figures 4a and 4b using 'intermediate_file_3.RData' _______________ Tables _______________ Table 1 + 'Table_1.do' produces Table 1 using 'contracts_for_ramey_merge.dta' Table 2 + 'Table_2_upper' produces the top portion of Table 2 using the 'sectors_unbalanced.dta' file created in 'setup_data_4.R' + 'Table_2_lower' produces the lower portion of Table 2 using the 'firms_unbalanced.dta' file created in 'setup_data_4.R' Table 3 + 'Table_3.R' produces Table 3 using 'intermediate_file_1.RData'. Table 4 + Components for Table 4 can be found in 'Figure_3a.R' and 'Figure_3b.R' (noted in those files). *** *** PART 2: Model Simulation *** *** Folder: "ModelSimulation" + Matlab file MAIN_generateIRFs.m generates Figures 5 and 6 in the paper. It calls the mod file modelG.mod + Matlab file MAIN_generateIRFs_htm.m generates Figure A.21 in the Appendix. It calls the mod file modelG_htm.mod + Both files run on Dynare 5.4. *** *** PART 3: VAR *** *** Folder: "VAR" (see README in VAR folder for more detail). Data Setup: "setup_var_data.R," like the files in the FiveFacts folder, will not run. They create a dataset of contracts by month and naics2 sector from the SQL database. + 'VAR.do' runs the VAR that produces Figure 7.</description><subject>Social Sciences</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotzj0LwjAYBOAsDlJdnB26FYTqm6Rp2tFvBUEQ9_AmaSSgtsQi6K-3otNxy91DyIjCVJYUZvZ5nxXB3N5Nn4xPVXP1Bltf3-MVthi7OsTJwl_ibTIgPYfXRzX8Z0TOm_V5uUsPx-1-OT-kVtImldxkgOBEIQoAnWvtcllyIXPGhXaZFDllBm0FzuoCLQOeMYZWZF2V1PGITH6ztvs3vq1UE_wNw0tRUF-x6sTqJ-YfkBw5OQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cox, Lydia</creator><creator>Mueller, Gernot</creator><creator>Pasten, Ernesto</creator><creator>Schoenle, Raphael</creator><creator>Weber, Michael</creator><general>Harvard Dataverse</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2024</creationdate><title>Replication Data for 'Big G'</title><author>Cox, Lydia ; Mueller, Gernot ; Pasten, Ernesto ; Schoenle, Raphael ; Weber, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d71p-73c40a0f585800b6bbf6793576235bf475612cade0fdb8ad203422ad54db871f3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Social Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Cox, Lydia</creatorcontrib><creatorcontrib>Mueller, Gernot</creatorcontrib><creatorcontrib>Pasten, Ernesto</creatorcontrib><creatorcontrib>Schoenle, Raphael</creatorcontrib><creatorcontrib>Weber, Michael</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cox, Lydia</au><au>Mueller, Gernot</au><au>Pasten, Ernesto</au><au>Schoenle, Raphael</au><au>Weber, Michael</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Replication Data for 'Big G'</title><date>2024</date><risdate>2024</risdate><abstract>The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. *** *** PART 1: Five Facts on Government spending *** *** Folder: FiveFacts This folder contains code to replicate Figures 1-4 and Tables 1-4 in Section 3 of the paper. ____________ Data Set-Up ____________ In order to run the included script files, the main dataset needs to be assembled. The data on federal procurement contracts used in this paper is all publicly available from USASpending.gov. The base dataset used for all of the empirical results in this paper consists of the universe of procurement contract transactions from 2001-2019---around 30 GB of data. Due to its size, the data requires a substantial amount of computing power to work with. Our approach was to load the data into a SQL database on a server, following the instructions provided by USASpending.gov, which can be found here: https://files.usaspending.gov/database_download/usaspending-db-setup.pdf. As a result, the replication code cannot feasibly start with the raw dataset, though we have provided the raw files at an annual basis at [INSERT URL FOR SITE HERE]. The files "setup_data_1.R", "setup_data_2.R", "setup_data_3.R", and "setup_data_4.R" pull from the SQL database and create intermediate files that are provided with this replication package. You will NOT be able to run the "set_up" files without setting up your own SQL database, but you CAN run the Figure and Table replication code (described below) using the intermediate files created in the setup files. _______________ Figures _______________ Figure 1 + Step 1: Run 'create_contract_proxy.R,' which creates a dataset called 'contracts_for_ramey_merge.dta' + Step 2: Run ramey_zubairy_replication.do, which is a file TAKEN DIRECTLY FROM THE REPLICATION PACKAGE for Ramey &amp; Zubairy (JPE, 2018), found at the link below. We merge our dataset into theirs, and re-run their regressions on our data. Ramey &amp; Zubairy (2018) replication: https://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. Figure 2 + 'Figure_2a.R' produces Figure 2a using 'intermediate_file_1.RData' + 'Figure_2b.R' produces Figure 2b using 'intermediate_file_2.RData' Figure 3 + 'Figure_3a.R' produces Figure 3a using 'intermediate_file_3.RData' + 'Figure_3b.R' produces Figure 3b using 'intermediate_file_2.RData' Figure 4 + 'Figure_4.R' produces Figures 4a and 4b using 'intermediate_file_3.RData' _______________ Tables _______________ Table 1 + 'Table_1.do' produces Table 1 using 'contracts_for_ramey_merge.dta' Table 2 + 'Table_2_upper' produces the top portion of Table 2 using the 'sectors_unbalanced.dta' file created in 'setup_data_4.R' + 'Table_2_lower' produces the lower portion of Table 2 using the 'firms_unbalanced.dta' file created in 'setup_data_4.R' Table 3 + 'Table_3.R' produces Table 3 using 'intermediate_file_1.RData'. Table 4 + Components for Table 4 can be found in 'Figure_3a.R' and 'Figure_3b.R' (noted in those files). *** *** PART 2: Model Simulation *** *** Folder: "ModelSimulation" + Matlab file MAIN_generateIRFs.m generates Figures 5 and 6 in the paper. It calls the mod file modelG.mod + Matlab file MAIN_generateIRFs_htm.m generates Figure A.21 in the Appendix. It calls the mod file modelG_htm.mod + Both files run on Dynare 5.4. *** *** PART 3: VAR *** *** Folder: "VAR" (see README in VAR folder for more detail). Data Setup: "setup_var_data.R," like the files in the FiveFacts folder, will not run. They create a dataset of contracts by month and naics2 sector from the SQL database. + 'VAR.do' runs the VAR that produces Figure 7.</abstract><pub>Harvard Dataverse</pub><doi>10.7910/dvn/8rcmzp</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.7910/dvn/8rcmzp
ispartof
issn
language eng
recordid cdi_datacite_primary_10_7910_dvn_8rcmzp
source DataCite
subjects Social Sciences
title Replication Data for 'Big G'
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Cox,%20Lydia&rft.date=2024&rft_id=info:doi/10.7910/dvn/8rcmzp&rft_dat=%3Cdatacite_PQ8%3E10_7910_dvn_8rcmzp%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true