Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I)
This DataShare dataset pertains to Identification of group-housed mice as documented in the Thesis "Automated Identification and Behaviour Classification for Modelling Social Dynamics in Group-Housed Mice" (2023) by Michael Camilleri. It grew out of a collaboration with the Mary Lyon Centr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Camilleri, Michael P. J. Zhang, Li Bains, Rasneer S. Zisserman, Andrew Williams, Christopher K.I. |
description | This DataShare dataset pertains to Identification of group-housed mice as documented in the Thesis "Automated Identification and Behaviour Classification for Modelling Social Dynamics in Group-Housed Mice" (2023) by Michael Camilleri. It grew out of a collaboration with the Mary Lyon Centre at MRC Harwell, with the need to automatically identify group-housed mice using only position cues obtained from RFID tags. This sets the problem apart from the usual re-identification challenge, due to the mice have no visual markers to identify them. The challenge is compounded by the multiple mice which must be tracked/identified and the level of occlusion. We provide herein an annotated dataset containing mouse videos, pre-generated bounding-boxes and annotations of identifications at 4s intervals. The dataset can be used to train and evaluate identification methods. Further details are available at https://github.com/michael-camilleri/TIDe. The paper describing our work appears as: M. P. J. Camilleri, L. Zhang, R. S. Bains, A. Zisserman, and C. K. I. Williams, Persistent Animal Identification Leveraging Non-Visual Markers, CoRR (arXiv), cs.CV (2112.06809), Dec. 2021. [Available on arXiv](https://arxiv.org/pdf/2112.06809.pdf). |
doi_str_mv | 10.7488/ds/3848 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_7488_ds_3848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_7488_ds_3848</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_7488_ds_38483</originalsourceid><addsrcrecordid>eNqNjzELwjAUhLM4iIp_IZs6xFpaMLhaxW6C3cOzScujbSpJWvAH-L9NwEUnp-Px3T3uCFnGu-0-5TySNkp4yqfkdVXGonVKOwoaO2gpSn9ghSU47DVt1agM1KhrqnvNRrSDN3VgGp880MJA2QQIWtL8O5qBA6scZT_A0ttwD2Bd5Jli-WZOJhW0Vi0-OiOr86k4Xpj0H0p0SjyM72aeIt6JMEBIK8KA5H_nGxWMU2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I)</title><source>DataCite</source><creator>Camilleri, Michael P. J. ; Zhang, Li ; Bains, Rasneer S. ; Zisserman, Andrew ; Williams, Christopher K.I.</creator><creatorcontrib>Camilleri, Michael P. J. ; Zhang, Li ; Bains, Rasneer S. ; Zisserman, Andrew ; Williams, Christopher K.I.</creatorcontrib><description>This DataShare dataset pertains to Identification of group-housed mice as documented in the Thesis "Automated Identification and Behaviour Classification for Modelling Social Dynamics in Group-Housed Mice" (2023) by Michael Camilleri. It grew out of a collaboration with the Mary Lyon Centre at MRC Harwell, with the need to automatically identify group-housed mice using only position cues obtained from RFID tags. This sets the problem apart from the usual re-identification challenge, due to the mice have no visual markers to identify them. The challenge is compounded by the multiple mice which must be tracked/identified and the level of occlusion. We provide herein an annotated dataset containing mouse videos, pre-generated bounding-boxes and annotations of identifications at 4s intervals. The dataset can be used to train and evaluate identification methods. Further details are available at https://github.com/michael-camilleri/TIDe. The paper describing our work appears as: M. P. J. Camilleri, L. Zhang, R. S. Bains, A. Zisserman, and C. K. I. Williams, Persistent Animal Identification Leveraging Non-Visual Markers, CoRR (arXiv), cs.CV (2112.06809), Dec. 2021. [Available on arXiv](https://arxiv.org/pdf/2112.06809.pdf).</description><identifier>DOI: 10.7488/ds/3848</identifier><language>eng</language><publisher>University of Edinburgh. School of Informatics. Institute of Adaptive and Neural Computation</publisher><subject>Animal Identification ; Computer vision ; Home Cage Analysis ; Identification ; Mathematical and Computer Sciences::Computer Vision ; Mouse Tracking ; Multi-Object Tracking ; Tracking</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.7488/ds/3848$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Camilleri, Michael P. J.</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Bains, Rasneer S.</creatorcontrib><creatorcontrib>Zisserman, Andrew</creatorcontrib><creatorcontrib>Williams, Christopher K.I.</creatorcontrib><title>Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I)</title><description>This DataShare dataset pertains to Identification of group-housed mice as documented in the Thesis "Automated Identification and Behaviour Classification for Modelling Social Dynamics in Group-Housed Mice" (2023) by Michael Camilleri. It grew out of a collaboration with the Mary Lyon Centre at MRC Harwell, with the need to automatically identify group-housed mice using only position cues obtained from RFID tags. This sets the problem apart from the usual re-identification challenge, due to the mice have no visual markers to identify them. The challenge is compounded by the multiple mice which must be tracked/identified and the level of occlusion. We provide herein an annotated dataset containing mouse videos, pre-generated bounding-boxes and annotations of identifications at 4s intervals. The dataset can be used to train and evaluate identification methods. Further details are available at https://github.com/michael-camilleri/TIDe. The paper describing our work appears as: M. P. J. Camilleri, L. Zhang, R. S. Bains, A. Zisserman, and C. K. I. Williams, Persistent Animal Identification Leveraging Non-Visual Markers, CoRR (arXiv), cs.CV (2112.06809), Dec. 2021. [Available on arXiv](https://arxiv.org/pdf/2112.06809.pdf).</description><subject>Animal Identification</subject><subject>Computer vision</subject><subject>Home Cage Analysis</subject><subject>Identification</subject><subject>Mathematical and Computer Sciences::Computer Vision</subject><subject>Mouse Tracking</subject><subject>Multi-Object Tracking</subject><subject>Tracking</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqNjzELwjAUhLM4iIp_IZs6xFpaMLhaxW6C3cOzScujbSpJWvAH-L9NwEUnp-Px3T3uCFnGu-0-5TySNkp4yqfkdVXGonVKOwoaO2gpSn9ghSU47DVt1agM1KhrqnvNRrSDN3VgGp880MJA2QQIWtL8O5qBA6scZT_A0ttwD2Bd5Jli-WZOJhW0Vi0-OiOr86k4Xpj0H0p0SjyM72aeIt6JMEBIK8KA5H_nGxWMU2Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Camilleri, Michael P. J.</creator><creator>Zhang, Li</creator><creator>Bains, Rasneer S.</creator><creator>Zisserman, Andrew</creator><creator>Williams, Christopher K.I.</creator><general>University of Edinburgh. School of Informatics. Institute of Adaptive and Neural Computation</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2023</creationdate><title>Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I)</title><author>Camilleri, Michael P. J. ; Zhang, Li ; Bains, Rasneer S. ; Zisserman, Andrew ; Williams, Christopher K.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_7488_ds_38483</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Identification</topic><topic>Computer vision</topic><topic>Home Cage Analysis</topic><topic>Identification</topic><topic>Mathematical and Computer Sciences::Computer Vision</topic><topic>Mouse Tracking</topic><topic>Multi-Object Tracking</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Camilleri, Michael P. J.</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Bains, Rasneer S.</creatorcontrib><creatorcontrib>Zisserman, Andrew</creatorcontrib><creatorcontrib>Williams, Christopher K.I.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Camilleri, Michael P. J.</au><au>Zhang, Li</au><au>Bains, Rasneer S.</au><au>Zisserman, Andrew</au><au>Williams, Christopher K.I.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I)</title><date>2023</date><risdate>2023</risdate><abstract>This DataShare dataset pertains to Identification of group-housed mice as documented in the Thesis "Automated Identification and Behaviour Classification for Modelling Social Dynamics in Group-Housed Mice" (2023) by Michael Camilleri. It grew out of a collaboration with the Mary Lyon Centre at MRC Harwell, with the need to automatically identify group-housed mice using only position cues obtained from RFID tags. This sets the problem apart from the usual re-identification challenge, due to the mice have no visual markers to identify them. The challenge is compounded by the multiple mice which must be tracked/identified and the level of occlusion. We provide herein an annotated dataset containing mouse videos, pre-generated bounding-boxes and annotations of identifications at 4s intervals. The dataset can be used to train and evaluate identification methods. Further details are available at https://github.com/michael-camilleri/TIDe. The paper describing our work appears as: M. P. J. Camilleri, L. Zhang, R. S. Bains, A. Zisserman, and C. K. I. Williams, Persistent Animal Identification Leveraging Non-Visual Markers, CoRR (arXiv), cs.CV (2112.06809), Dec. 2021. [Available on arXiv](https://arxiv.org/pdf/2112.06809.pdf).</abstract><pub>University of Edinburgh. School of Informatics. Institute of Adaptive and Neural Computation</pub><doi>10.7488/ds/3848</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.7488/ds/3848 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_7488_ds_3848 |
source | DataCite |
subjects | Animal Identification Computer vision Home Cage Analysis Identification Mathematical and Computer Sciences::Computer Vision Mouse Tracking Multi-Object Tracking Tracking |
title | Persistent animal identification leveraging non-visual markers: Tracking and Identification Dataset - Identifications Subset (TIDe-I) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Camilleri,%20Michael%20P.%20J.&rft.date=2023&rft_id=info:doi/10.7488/ds/3848&rft_dat=%3Cdatacite_PQ8%3E10_7488_ds_3848%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |