Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals

Five chiral compounds were designed and synthesized using the Mitsunobu reaction to act as chiral inducers (i.e., chiral dopants) for the transformation of a nematic liquid crystal (LC) (4-n-octoxy-4′-cyanobiphenyl) into a cholesteric LC. These chiral inducers contain two types of chiral alkyl chain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haoyue Shen, Goto, Hiromasa
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Haoyue Shen
Goto, Hiromasa
description Five chiral compounds were designed and synthesized using the Mitsunobu reaction to act as chiral inducers (i.e., chiral dopants) for the transformation of a nematic liquid crystal (LC) (4-n-octoxy-4′-cyanobiphenyl) into a cholesteric LC. These chiral inducers contain two types of chiral alkyl chains with different kinds of achiral mesogenic cores (biphenylcarboxylate, biphenoxy, and cyanobiphenoxy). We observed that the achiral mesogenic cores affected the helical twisting power in terms of both induction strength and helicity (left-/right-hand introduction). All the ester type inducers exhibited a positive Cotton effect and right-hand helical twisting power (HTP). However, ethers exhibited a negative Cotton effect and left-hand HTP. The microscopic HTPs (βM) of these inducers demonstrate a linear relation with their optical activities (ellipticity near the absorption maximum). Further, the time-dependent density functional theory (TD–DFT) calculation using the B3LYP/6-311++G (d, p) method has been used to predict the circular dichroism spectra of these inducers. The predicted optical activity was observed to be in accordance with that observed in the experimental result. This study proposes a method for predicting the HTP of chiral inducers that can be applied to achieve polymerization in the reaction fields of cholesteric LCs.
doi_str_mv 10.6084/m9.figshare.7945397
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_7945397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_7945397</sourcerecordid><originalsourceid>FETCH-LOGICAL-d897-9e269650cadd2bf53bfc56046d1977e2fbf044ddc790c2e47775ad40cf48f19e3</originalsourceid><addsrcrecordid>eNo1kL1OxDAQhNNQoIMnoHEJRQ4nceJzie4HkE6iSR859vpiybGD7dMpPBZPiANHsyPtaGdWX5Y9FHjd4A15Htla6VMYuIc1ZaSuGL3Nvvch6pFH7SxyCsUB0ABGC25QvOjk2ROa3AX84opB-2RoK88CfED9jNIx5BImsBJsRGkEHWekzlYsmUvMAM7P6LHd5btD-4SU8wgMiOidGGD8rZqcmUfw-uvvEW1TlTMQYtoJZPTnWUsk_BwiN-Euu1FJ4P6qq6w97NvtW378eH3fvhxzuWE0Z1A2rKmx4FKWvaqrXom6waSRBaMUStUrTIiUgjIsSiCU0ppLgoUiG1UwqFZZ9RcreeRCR-gmn0j5uStwtwDtRtb9A-2uQKsftZV4BQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals</title><source>DataCite</source><creator>Haoyue Shen ; Goto, Hiromasa</creator><creatorcontrib>Haoyue Shen ; Goto, Hiromasa</creatorcontrib><description>Five chiral compounds were designed and synthesized using the Mitsunobu reaction to act as chiral inducers (i.e., chiral dopants) for the transformation of a nematic liquid crystal (LC) (4-n-octoxy-4′-cyanobiphenyl) into a cholesteric LC. These chiral inducers contain two types of chiral alkyl chains with different kinds of achiral mesogenic cores (biphenylcarboxylate, biphenoxy, and cyanobiphenoxy). We observed that the achiral mesogenic cores affected the helical twisting power in terms of both induction strength and helicity (left-/right-hand introduction). All the ester type inducers exhibited a positive Cotton effect and right-hand helical twisting power (HTP). However, ethers exhibited a negative Cotton effect and left-hand HTP. The microscopic HTPs (βM) of these inducers demonstrate a linear relation with their optical activities (ellipticity near the absorption maximum). Further, the time-dependent density functional theory (TD–DFT) calculation using the B3LYP/6-311++G (d, p) method has been used to predict the circular dichroism spectra of these inducers. The predicted optical activity was observed to be in accordance with that observed in the experimental result. This study proposes a method for predicting the HTP of chiral inducers that can be applied to achieve polymerization in the reaction fields of cholesteric LCs.</description><identifier>DOI: 10.6084/m9.figshare.7945397</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Chemical Sciences not elsewhere classified ; Evolutionary Biology ; FOS: Biological sciences ; FOS: Chemical sciences ; FOS: Clinical medicine ; Immunology ; Plant Biology ; Science Policy</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.7945397$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Haoyue Shen</creatorcontrib><creatorcontrib>Goto, Hiromasa</creatorcontrib><title>Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals</title><description>Five chiral compounds were designed and synthesized using the Mitsunobu reaction to act as chiral inducers (i.e., chiral dopants) for the transformation of a nematic liquid crystal (LC) (4-n-octoxy-4′-cyanobiphenyl) into a cholesteric LC. These chiral inducers contain two types of chiral alkyl chains with different kinds of achiral mesogenic cores (biphenylcarboxylate, biphenoxy, and cyanobiphenoxy). We observed that the achiral mesogenic cores affected the helical twisting power in terms of both induction strength and helicity (left-/right-hand introduction). All the ester type inducers exhibited a positive Cotton effect and right-hand helical twisting power (HTP). However, ethers exhibited a negative Cotton effect and left-hand HTP. The microscopic HTPs (βM) of these inducers demonstrate a linear relation with their optical activities (ellipticity near the absorption maximum). Further, the time-dependent density functional theory (TD–DFT) calculation using the B3LYP/6-311++G (d, p) method has been used to predict the circular dichroism spectra of these inducers. The predicted optical activity was observed to be in accordance with that observed in the experimental result. This study proposes a method for predicting the HTP of chiral inducers that can be applied to achieve polymerization in the reaction fields of cholesteric LCs.</description><subject>Chemical Sciences not elsewhere classified</subject><subject>Evolutionary Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Chemical sciences</subject><subject>FOS: Clinical medicine</subject><subject>Immunology</subject><subject>Plant Biology</subject><subject>Science Policy</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kL1OxDAQhNNQoIMnoHEJRQ4nceJzie4HkE6iSR859vpiybGD7dMpPBZPiANHsyPtaGdWX5Y9FHjd4A15Htla6VMYuIc1ZaSuGL3Nvvch6pFH7SxyCsUB0ABGC25QvOjk2ROa3AX84opB-2RoK88CfED9jNIx5BImsBJsRGkEHWekzlYsmUvMAM7P6LHd5btD-4SU8wgMiOidGGD8rZqcmUfw-uvvEW1TlTMQYtoJZPTnWUsk_BwiN-Euu1FJ4P6qq6w97NvtW378eH3fvhxzuWE0Z1A2rKmx4FKWvaqrXom6waSRBaMUStUrTIiUgjIsSiCU0ppLgoUiG1UwqFZZ9RcreeRCR-gmn0j5uStwtwDtRtb9A-2uQKsftZV4BQ</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Haoyue Shen</creator><creator>Goto, Hiromasa</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190403</creationdate><title>Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals</title><author>Haoyue Shen ; Goto, Hiromasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d897-9e269650cadd2bf53bfc56046d1977e2fbf044ddc790c2e47775ad40cf48f19e3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences not elsewhere classified</topic><topic>Evolutionary Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Chemical sciences</topic><topic>FOS: Clinical medicine</topic><topic>Immunology</topic><topic>Plant Biology</topic><topic>Science Policy</topic><toplevel>online_resources</toplevel><creatorcontrib>Haoyue Shen</creatorcontrib><creatorcontrib>Goto, Hiromasa</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haoyue Shen</au><au>Goto, Hiromasa</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals</title><date>2019-04-03</date><risdate>2019</risdate><abstract>Five chiral compounds were designed and synthesized using the Mitsunobu reaction to act as chiral inducers (i.e., chiral dopants) for the transformation of a nematic liquid crystal (LC) (4-n-octoxy-4′-cyanobiphenyl) into a cholesteric LC. These chiral inducers contain two types of chiral alkyl chains with different kinds of achiral mesogenic cores (biphenylcarboxylate, biphenoxy, and cyanobiphenoxy). We observed that the achiral mesogenic cores affected the helical twisting power in terms of both induction strength and helicity (left-/right-hand introduction). All the ester type inducers exhibited a positive Cotton effect and right-hand helical twisting power (HTP). However, ethers exhibited a negative Cotton effect and left-hand HTP. The microscopic HTPs (βM) of these inducers demonstrate a linear relation with their optical activities (ellipticity near the absorption maximum). Further, the time-dependent density functional theory (TD–DFT) calculation using the B3LYP/6-311++G (d, p) method has been used to predict the circular dichroism spectra of these inducers. The predicted optical activity was observed to be in accordance with that observed in the experimental result. This study proposes a method for predicting the HTP of chiral inducers that can be applied to achieve polymerization in the reaction fields of cholesteric LCs.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.7945397</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.7945397
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_7945397
source DataCite
subjects Chemical Sciences not elsewhere classified
Evolutionary Biology
FOS: Biological sciences
FOS: Chemical sciences
FOS: Clinical medicine
Immunology
Plant Biology
Science Policy
title Estimation of the helical twisting power of chiral inducers by time-dependent density functional theory (TD-DFT) for electrochemical polymerization in cholesteric liquid crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Haoyue%20Shen&rft.date=2019-04-03&rft_id=info:doi/10.6084/m9.figshare.7945397&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_7945397%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true