Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification
Abstract This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor by analyzing the stator current. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and locati...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | K. Azouzi A. H. Boudinar F. A. Aimer A. Bendiabdellah |
description | Abstract This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor by analyzing the stator current. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and location of the fault's signature frequency. The second method allows the estimation of the fault amplitude. To this end, the Kalman filter is used for its efficient estimation of both amplitude and phase using the frequencies obtained by the first method. This combination of both methods gives a better frequency resolution for a very short acquisition time, which cannot be obtained using the conventional method of the Periodogram. Moreover, in order to reduce the significant computation time resulting from the use of the Kalman filter, the proposed approach is applied only to the frequency band where the fault signature is likely to appear. A series of tests will be carried out on real signals representing rotor faults. |
doi_str_mv | 10.6084/m9.figshare.6235274 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_6235274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_6235274</sourcerecordid><originalsourceid>FETCH-LOGICAL-d894-f042e730c492ecd450bb114b4ca1461025bb3bf22c2895433b6809d73ff53e763</originalsourceid><addsrcrecordid>eNo1j7lOAzEURd1QoMAX0PgHZvA2i8sorCJSCgKt9bwRK2N75DEFfw9RQnV1pKsjHYTuKGl7Mor7KFsfvpYDFNf2jHdsENcIPhaHs8eATY46JGfx--dD8wZThIR9mKorGOa5ZDAH7HPBIdlvU0NOOOb6x7rko0u4nAHKgoN1qQYfDJxuN-jKw7S428uu0P7pcb95aba759fNetvYUYrGE8HcwIkRkjljRUe0plRoYYCKnhLWac21Z8ywUXaCc92PRNqBe99xN_R8hfhZa6GCCdWpuYQI5UdRok79Kkr1368u_fwXxM9XdA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification</title><source>DataCite</source><creator>K. Azouzi ; A. H. Boudinar ; F. A. Aimer ; A. Bendiabdellah</creator><creatorcontrib>K. Azouzi ; A. H. Boudinar ; F. A. Aimer ; A. Bendiabdellah</creatorcontrib><description>Abstract This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor by analyzing the stator current. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and location of the fault's signature frequency. The second method allows the estimation of the fault amplitude. To this end, the Kalman filter is used for its efficient estimation of both amplitude and phase using the frequencies obtained by the first method. This combination of both methods gives a better frequency resolution for a very short acquisition time, which cannot be obtained using the conventional method of the Periodogram. Moreover, in order to reduce the significant computation time resulting from the use of the Kalman filter, the proposed approach is applied only to the frequency band where the fault signature is likely to appear. A series of tests will be carried out on real signals representing rotor faults.</description><identifier>DOI: 10.6084/m9.figshare.6235274</identifier><language>eng</language><publisher>SciELO journals</publisher><subject>Engineering Practice ; FOS: Other engineering and technologies ; FOS: Physical sciences ; Optical Physics not elsewhere classified</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.6235274$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>K. Azouzi</creatorcontrib><creatorcontrib>A. H. Boudinar</creatorcontrib><creatorcontrib>F. A. Aimer</creatorcontrib><creatorcontrib>A. Bendiabdellah</creatorcontrib><title>Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification</title><description>Abstract This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor by analyzing the stator current. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and location of the fault's signature frequency. The second method allows the estimation of the fault amplitude. To this end, the Kalman filter is used for its efficient estimation of both amplitude and phase using the frequencies obtained by the first method. This combination of both methods gives a better frequency resolution for a very short acquisition time, which cannot be obtained using the conventional method of the Periodogram. Moreover, in order to reduce the significant computation time resulting from the use of the Kalman filter, the proposed approach is applied only to the frequency band where the fault signature is likely to appear. A series of tests will be carried out on real signals representing rotor faults.</description><subject>Engineering Practice</subject><subject>FOS: Other engineering and technologies</subject><subject>FOS: Physical sciences</subject><subject>Optical Physics not elsewhere classified</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2018</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j7lOAzEURd1QoMAX0PgHZvA2i8sorCJSCgKt9bwRK2N75DEFfw9RQnV1pKsjHYTuKGl7Mor7KFsfvpYDFNf2jHdsENcIPhaHs8eATY46JGfx--dD8wZThIR9mKorGOa5ZDAH7HPBIdlvU0NOOOb6x7rko0u4nAHKgoN1qQYfDJxuN-jKw7S428uu0P7pcb95aba759fNetvYUYrGE8HcwIkRkjljRUe0plRoYYCKnhLWac21Z8ywUXaCc92PRNqBe99xN_R8hfhZa6GCCdWpuYQI5UdRok79Kkr1368u_fwXxM9XdA</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>K. Azouzi</creator><creator>A. H. Boudinar</creator><creator>F. A. Aimer</creator><creator>A. Bendiabdellah</creator><general>SciELO journals</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20180509</creationdate><title>Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification</title><author>K. Azouzi ; A. H. Boudinar ; F. A. Aimer ; A. Bendiabdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d894-f042e730c492ecd450bb114b4ca1461025bb3bf22c2895433b6809d73ff53e763</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Engineering Practice</topic><topic>FOS: Other engineering and technologies</topic><topic>FOS: Physical sciences</topic><topic>Optical Physics not elsewhere classified</topic><toplevel>online_resources</toplevel><creatorcontrib>K. Azouzi</creatorcontrib><creatorcontrib>A. H. Boudinar</creatorcontrib><creatorcontrib>F. A. Aimer</creatorcontrib><creatorcontrib>A. Bendiabdellah</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>K. Azouzi</au><au>A. H. Boudinar</au><au>F. A. Aimer</au><au>A. Bendiabdellah</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification</title><date>2018-05-09</date><risdate>2018</risdate><abstract>Abstract This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor by analyzing the stator current. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and location of the fault's signature frequency. The second method allows the estimation of the fault amplitude. To this end, the Kalman filter is used for its efficient estimation of both amplitude and phase using the frequencies obtained by the first method. This combination of both methods gives a better frequency resolution for a very short acquisition time, which cannot be obtained using the conventional method of the Periodogram. Moreover, in order to reduce the significant computation time resulting from the use of the Kalman filter, the proposed approach is applied only to the frequency band where the fault signature is likely to appear. A series of tests will be carried out on real signals representing rotor faults.</abstract><pub>SciELO journals</pub><doi>10.6084/m9.figshare.6235274</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.6235274 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_6235274 |
source | DataCite |
subjects | Engineering Practice FOS: Other engineering and technologies FOS: Physical sciences Optical Physics not elsewhere classified |
title | Use of a combined SVD-Kalman filter approach for induction motor broken rotor bars identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=K.%20Azouzi&rft.date=2018-05-09&rft_id=info:doi/10.6084/m9.figshare.6235274&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_6235274%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |