Overt and covert paths for sound in the auditory system of mammals

Current scientific consensus holds that sound is transmitted, solely mechanically, from the tympanum to the cochlea via ossicles. But this theory does not explain the hearing extreme quality regarding high frequencies in mammals. So, we propose a bioelectronic pathway (the covert path) that is compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AURIOL, Bernard, Béard, Jérôme, Auriol, Benjamin, Jean-Marc Broto, Descouens, Didier, Durand, Lise LS, Florens, Jean-Pierre, Garcia, Frederick, Gillieaux, Christian, Joiner, Elizabeth G., Libes, Bernard, Pergent, Philippe, Ruiz, Robert, Thalamas, Claire, Bibé, Bernard
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator AURIOL, Bernard
Béard, Jérôme
Auriol, Benjamin
Jean-Marc Broto
Descouens, Didier
Durand, Lise LS
Florens, Jean-Pierre
Garcia, Frederick
Gillieaux, Christian
Joiner, Elizabeth G.
Libes, Bernard
Pergent, Philippe
Ruiz, Robert
Thalamas, Claire
Bibé, Bernard
description Current scientific consensus holds that sound is transmitted, solely mechanically, from the tympanum to the cochlea via ossicles. But this theory does not explain the hearing extreme quality regarding high frequencies in mammals. So, we propose a bioelectronic pathway (the covert path) that is complementary to the overt path.. We demonstrate experimentally that the tympanum produces piezoelectric potentials isochronous to acoustic vibrations thanks to its collagen fibers and that their amplitude increases along with the frequency and level of the vibrations. This finding supports the existence of an electrical pathway, specialized in transmitting high-frequency sounds, that works in unison with the mechanical pathway. A bio-organic triode, similar to a field effect transistor, is the key mechanism of our hypothesized pathway. We present evidence that any deficiency along this pathway produces hearing impairment. By augmenting the classical theory of sound transmission, our discovery offers new perspectives for research into both normal and pathological audition and may contribute to an understanding of genetic and physiological problems of hearing. It is clear that this configuration and function is present in the other mammals ...
doi_str_mv 10.6084/m9.figshare.5671807
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_5671807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_5671807</sourcerecordid><originalsourceid>FETCH-LOGICAL-d897-27c0377ccb2859e0fa712571ec1844ff305fcf0cc1a2e2f9a38358e21b096e983</originalsourceid><addsrcrecordid>eNo1j8tOAyEYRtm4MNUncMMLzMhlGGCpjbekSTfdk7_MT4dESgPUZN7eqnV1vnyLkxxCHjjrR2aGx2T7EA91hoK9GjU3TN-S5-0XlkbhOFGff-cJ2lxpyIXWfL7c8UjbjBTOU2y5LLQutWGiOdAEKcFnvSM34QK8v3JFdq8vu_V7t9m-fayfNt1krO6E9kxq7f1eGGWRBdBcKM3RczMMIUimgg_Mew4CRbAgjVQGBd8zO6I1ckXkn3aCBj42dKcSE5TFceZ-Al2y7j_QXQPlN4PTTJg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Overt and covert paths for sound in the auditory system of mammals</title><source>DataCite</source><creator>AURIOL, Bernard ; Béard, Jérôme ; Auriol, Benjamin ; Jean-Marc Broto ; Descouens, Didier ; Durand, Lise LS ; Florens, Jean-Pierre ; Garcia, Frederick ; Gillieaux, Christian ; Joiner, Elizabeth G. ; Libes, Bernard ; Pergent, Philippe ; Ruiz, Robert ; Thalamas, Claire ; Bibé, Bernard</creator><creatorcontrib>AURIOL, Bernard ; Béard, Jérôme ; Auriol, Benjamin ; Jean-Marc Broto ; Descouens, Didier ; Durand, Lise LS ; Florens, Jean-Pierre ; Garcia, Frederick ; Gillieaux, Christian ; Joiner, Elizabeth G. ; Libes, Bernard ; Pergent, Philippe ; Ruiz, Robert ; Thalamas, Claire ; Bibé, Bernard</creatorcontrib><description>Current scientific consensus holds that sound is transmitted, solely mechanically, from the tympanum to the cochlea via ossicles. But this theory does not explain the hearing extreme quality regarding high frequencies in mammals. So, we propose a bioelectronic pathway (the covert path) that is complementary to the overt path.. We demonstrate experimentally that the tympanum produces piezoelectric potentials isochronous to acoustic vibrations thanks to its collagen fibers and that their amplitude increases along with the frequency and level of the vibrations. This finding supports the existence of an electrical pathway, specialized in transmitting high-frequency sounds, that works in unison with the mechanical pathway. A bio-organic triode, similar to a field effect transistor, is the key mechanism of our hypothesized pathway. We present evidence that any deficiency along this pathway produces hearing impairment. By augmenting the classical theory of sound transmission, our discovery offers new perspectives for research into both normal and pathological audition and may contribute to an understanding of genetic and physiological problems of hearing. It is clear that this configuration and function is present in the other mammals ...</description><identifier>DOI: 10.6084/m9.figshare.5671807</identifier><language>eng</language><publisher>figshare</publisher><subject>FOS: Biological sciences ; Physiology</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.5671807$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AURIOL, Bernard</creatorcontrib><creatorcontrib>Béard, Jérôme</creatorcontrib><creatorcontrib>Auriol, Benjamin</creatorcontrib><creatorcontrib>Jean-Marc Broto</creatorcontrib><creatorcontrib>Descouens, Didier</creatorcontrib><creatorcontrib>Durand, Lise LS</creatorcontrib><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Garcia, Frederick</creatorcontrib><creatorcontrib>Gillieaux, Christian</creatorcontrib><creatorcontrib>Joiner, Elizabeth G.</creatorcontrib><creatorcontrib>Libes, Bernard</creatorcontrib><creatorcontrib>Pergent, Philippe</creatorcontrib><creatorcontrib>Ruiz, Robert</creatorcontrib><creatorcontrib>Thalamas, Claire</creatorcontrib><creatorcontrib>Bibé, Bernard</creatorcontrib><title>Overt and covert paths for sound in the auditory system of mammals</title><description>Current scientific consensus holds that sound is transmitted, solely mechanically, from the tympanum to the cochlea via ossicles. But this theory does not explain the hearing extreme quality regarding high frequencies in mammals. So, we propose a bioelectronic pathway (the covert path) that is complementary to the overt path.. We demonstrate experimentally that the tympanum produces piezoelectric potentials isochronous to acoustic vibrations thanks to its collagen fibers and that their amplitude increases along with the frequency and level of the vibrations. This finding supports the existence of an electrical pathway, specialized in transmitting high-frequency sounds, that works in unison with the mechanical pathway. A bio-organic triode, similar to a field effect transistor, is the key mechanism of our hypothesized pathway. We present evidence that any deficiency along this pathway produces hearing impairment. By augmenting the classical theory of sound transmission, our discovery offers new perspectives for research into both normal and pathological audition and may contribute to an understanding of genetic and physiological problems of hearing. It is clear that this configuration and function is present in the other mammals ...</description><subject>FOS: Biological sciences</subject><subject>Physiology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j8tOAyEYRtm4MNUncMMLzMhlGGCpjbekSTfdk7_MT4dESgPUZN7eqnV1vnyLkxxCHjjrR2aGx2T7EA91hoK9GjU3TN-S5-0XlkbhOFGff-cJ2lxpyIXWfL7c8UjbjBTOU2y5LLQutWGiOdAEKcFnvSM34QK8v3JFdq8vu_V7t9m-fayfNt1krO6E9kxq7f1eGGWRBdBcKM3RczMMIUimgg_Mew4CRbAgjVQGBd8zO6I1ckXkn3aCBj42dKcSE5TFceZ-Al2y7j_QXQPlN4PTTJg</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>AURIOL, Bernard</creator><creator>Béard, Jérôme</creator><creator>Auriol, Benjamin</creator><creator>Jean-Marc Broto</creator><creator>Descouens, Didier</creator><creator>Durand, Lise LS</creator><creator>Florens, Jean-Pierre</creator><creator>Garcia, Frederick</creator><creator>Gillieaux, Christian</creator><creator>Joiner, Elizabeth G.</creator><creator>Libes, Bernard</creator><creator>Pergent, Philippe</creator><creator>Ruiz, Robert</creator><creator>Thalamas, Claire</creator><creator>Bibé, Bernard</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20171205</creationdate><title>Overt and covert paths for sound in the auditory system of mammals</title><author>AURIOL, Bernard ; Béard, Jérôme ; Auriol, Benjamin ; Jean-Marc Broto ; Descouens, Didier ; Durand, Lise LS ; Florens, Jean-Pierre ; Garcia, Frederick ; Gillieaux, Christian ; Joiner, Elizabeth G. ; Libes, Bernard ; Pergent, Philippe ; Ruiz, Robert ; Thalamas, Claire ; Bibé, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d897-27c0377ccb2859e0fa712571ec1844ff305fcf0cc1a2e2f9a38358e21b096e983</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>FOS: Biological sciences</topic><topic>Physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>AURIOL, Bernard</creatorcontrib><creatorcontrib>Béard, Jérôme</creatorcontrib><creatorcontrib>Auriol, Benjamin</creatorcontrib><creatorcontrib>Jean-Marc Broto</creatorcontrib><creatorcontrib>Descouens, Didier</creatorcontrib><creatorcontrib>Durand, Lise LS</creatorcontrib><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Garcia, Frederick</creatorcontrib><creatorcontrib>Gillieaux, Christian</creatorcontrib><creatorcontrib>Joiner, Elizabeth G.</creatorcontrib><creatorcontrib>Libes, Bernard</creatorcontrib><creatorcontrib>Pergent, Philippe</creatorcontrib><creatorcontrib>Ruiz, Robert</creatorcontrib><creatorcontrib>Thalamas, Claire</creatorcontrib><creatorcontrib>Bibé, Bernard</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AURIOL, Bernard</au><au>Béard, Jérôme</au><au>Auriol, Benjamin</au><au>Jean-Marc Broto</au><au>Descouens, Didier</au><au>Durand, Lise LS</au><au>Florens, Jean-Pierre</au><au>Garcia, Frederick</au><au>Gillieaux, Christian</au><au>Joiner, Elizabeth G.</au><au>Libes, Bernard</au><au>Pergent, Philippe</au><au>Ruiz, Robert</au><au>Thalamas, Claire</au><au>Bibé, Bernard</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Overt and covert paths for sound in the auditory system of mammals</title><date>2017-12-05</date><risdate>2017</risdate><abstract>Current scientific consensus holds that sound is transmitted, solely mechanically, from the tympanum to the cochlea via ossicles. But this theory does not explain the hearing extreme quality regarding high frequencies in mammals. So, we propose a bioelectronic pathway (the covert path) that is complementary to the overt path.. We demonstrate experimentally that the tympanum produces piezoelectric potentials isochronous to acoustic vibrations thanks to its collagen fibers and that their amplitude increases along with the frequency and level of the vibrations. This finding supports the existence of an electrical pathway, specialized in transmitting high-frequency sounds, that works in unison with the mechanical pathway. A bio-organic triode, similar to a field effect transistor, is the key mechanism of our hypothesized pathway. We present evidence that any deficiency along this pathway produces hearing impairment. By augmenting the classical theory of sound transmission, our discovery offers new perspectives for research into both normal and pathological audition and may contribute to an understanding of genetic and physiological problems of hearing. It is clear that this configuration and function is present in the other mammals ...</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.5671807</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.5671807
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_5671807
source DataCite
subjects FOS: Biological sciences
Physiology
title Overt and covert paths for sound in the auditory system of mammals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=AURIOL,%20Bernard&rft.date=2017-12-05&rft_id=info:doi/10.6084/m9.figshare.5671807&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_5671807%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true