Study of a droplet electrification system in a backpack sprayer in a Faraday cage
ABSTRACT This study evaluated the factors affecting the charge/mass ratio (Q/M) generated by a droplet electrification system in a backpack sprayer with an electrostatic kit, using a Faraday cage. Two experiments were conducted in completely randomized design to determine the effect of application r...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Tavares, Rafael Marcão Cunha, João Paulo Arantes Rodrigues Da Thales Cassemiro Alves Alves, Guilherme Sousa Silva, João Eduardo Ribeiro |
description | ABSTRACT This study evaluated the factors affecting the charge/mass ratio (Q/M) generated by a droplet electrification system in a backpack sprayer with an electrostatic kit, using a Faraday cage. Two experiments were conducted in completely randomized design to determine the effect of application rate, the distance between the nozzle and the target, and spraying mixtures on performance of the droplet electrification system. The first study evaluated four distances (0, 0.5, 1.0, and 2.0 m) between the nozzle and the Faraday cage; the second study was conducted in a factorial design, with five tank mixtures and five flow rates (0.25, 0.76, 1.00, 1.45, and 1.58 L min-1). The Q/M ratio was determined using a multimeter by measuring the electric current from the volume of mixture sprayed in the Faraday cage, which was divided by the respective liquid mass. Droplet spectrum was analyzed by a particle analyzer using laser diffraction. The Q/M ratio became smaller as the spraying flow rate increased, similarly as observed with increasing distances of the electrostatic nozzle from the cage entrance. The Q/M ratio increased with the addition of mineral oil, vegetable oil, and insecticide to the spraying mixture. Flow rate, distance between the nozzle and the target, and the spraying mixture affected the electrostatic spraying efficiency. |
doi_str_mv | 10.6084/m9.figshare.5668078 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_5668078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_5668078</sourcerecordid><originalsourceid>FETCH-LOGICAL-d898-79c0c806ed45d81b58a62b1454875ab74d1a4b72acbbac401235719bbf68eecb3</originalsourceid><addsrcrecordid>eNo1j01qwzAUhLXpoqQ9QTe6gF3J1u8yhKYtBEpp9uJJek5F7NjI6sK3r0vSxTAwDDN8hDxxVitmxPNg6y6d5m_IWEulDNPmnnx-lZ-40LGjQGMepx4LxR5DyalLAUoaL3Re5oIDTZe14yGcp1V0njIsmK_pHjJEWGiAEz6Quw76GR9vviHH_ctx91YdPl7fd9tDFY01lbaBBcMURiGj4V4aUI3nQgqjJXgtIgfhdQPBr5eC8aaVmlvvO2UQg283pL3ORigQUkE35TRAXhxn7o_XDdb987obb_sL0pFSMg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Study of a droplet electrification system in a backpack sprayer in a Faraday cage</title><source>DataCite</source><creator>Tavares, Rafael Marcão ; Cunha, João Paulo Arantes Rodrigues Da ; Thales Cassemiro Alves ; Alves, Guilherme Sousa ; Silva, João Eduardo Ribeiro</creator><creatorcontrib>Tavares, Rafael Marcão ; Cunha, João Paulo Arantes Rodrigues Da ; Thales Cassemiro Alves ; Alves, Guilherme Sousa ; Silva, João Eduardo Ribeiro</creatorcontrib><description>ABSTRACT This study evaluated the factors affecting the charge/mass ratio (Q/M) generated by a droplet electrification system in a backpack sprayer with an electrostatic kit, using a Faraday cage. Two experiments were conducted in completely randomized design to determine the effect of application rate, the distance between the nozzle and the target, and spraying mixtures on performance of the droplet electrification system. The first study evaluated four distances (0, 0.5, 1.0, and 2.0 m) between the nozzle and the Faraday cage; the second study was conducted in a factorial design, with five tank mixtures and five flow rates (0.25, 0.76, 1.00, 1.45, and 1.58 L min-1). The Q/M ratio was determined using a multimeter by measuring the electric current from the volume of mixture sprayed in the Faraday cage, which was divided by the respective liquid mass. Droplet spectrum was analyzed by a particle analyzer using laser diffraction. The Q/M ratio became smaller as the spraying flow rate increased, similarly as observed with increasing distances of the electrostatic nozzle from the cage entrance. The Q/M ratio increased with the addition of mineral oil, vegetable oil, and insecticide to the spraying mixture. Flow rate, distance between the nozzle and the target, and the spraying mixture affected the electrostatic spraying efficiency.</description><identifier>DOI: 10.6084/m9.figshare.5668078</identifier><language>eng</language><publisher>SciELO journals</publisher><subject>Agricultural Biotechnology not elsewhere classified ; FOS: Agricultural biotechnology</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.5668078$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tavares, Rafael Marcão</creatorcontrib><creatorcontrib>Cunha, João Paulo Arantes Rodrigues Da</creatorcontrib><creatorcontrib>Thales Cassemiro Alves</creatorcontrib><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Silva, João Eduardo Ribeiro</creatorcontrib><title>Study of a droplet electrification system in a backpack sprayer in a Faraday cage</title><description>ABSTRACT This study evaluated the factors affecting the charge/mass ratio (Q/M) generated by a droplet electrification system in a backpack sprayer with an electrostatic kit, using a Faraday cage. Two experiments were conducted in completely randomized design to determine the effect of application rate, the distance between the nozzle and the target, and spraying mixtures on performance of the droplet electrification system. The first study evaluated four distances (0, 0.5, 1.0, and 2.0 m) between the nozzle and the Faraday cage; the second study was conducted in a factorial design, with five tank mixtures and five flow rates (0.25, 0.76, 1.00, 1.45, and 1.58 L min-1). The Q/M ratio was determined using a multimeter by measuring the electric current from the volume of mixture sprayed in the Faraday cage, which was divided by the respective liquid mass. Droplet spectrum was analyzed by a particle analyzer using laser diffraction. The Q/M ratio became smaller as the spraying flow rate increased, similarly as observed with increasing distances of the electrostatic nozzle from the cage entrance. The Q/M ratio increased with the addition of mineral oil, vegetable oil, and insecticide to the spraying mixture. Flow rate, distance between the nozzle and the target, and the spraying mixture affected the electrostatic spraying efficiency.</description><subject>Agricultural Biotechnology not elsewhere classified</subject><subject>FOS: Agricultural biotechnology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j01qwzAUhLXpoqQ9QTe6gF3J1u8yhKYtBEpp9uJJek5F7NjI6sK3r0vSxTAwDDN8hDxxVitmxPNg6y6d5m_IWEulDNPmnnx-lZ-40LGjQGMepx4LxR5DyalLAUoaL3Re5oIDTZe14yGcp1V0njIsmK_pHjJEWGiAEz6Quw76GR9vviHH_ctx91YdPl7fd9tDFY01lbaBBcMURiGj4V4aUI3nQgqjJXgtIgfhdQPBr5eC8aaVmlvvO2UQg283pL3ORigQUkE35TRAXhxn7o_XDdb987obb_sL0pFSMg</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Tavares, Rafael Marcão</creator><creator>Cunha, João Paulo Arantes Rodrigues Da</creator><creator>Thales Cassemiro Alves</creator><creator>Alves, Guilherme Sousa</creator><creator>Silva, João Eduardo Ribeiro</creator><general>SciELO journals</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20171205</creationdate><title>Study of a droplet electrification system in a backpack sprayer in a Faraday cage</title><author>Tavares, Rafael Marcão ; Cunha, João Paulo Arantes Rodrigues Da ; Thales Cassemiro Alves ; Alves, Guilherme Sousa ; Silva, João Eduardo Ribeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d898-79c0c806ed45d81b58a62b1454875ab74d1a4b72acbbac401235719bbf68eecb3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural Biotechnology not elsewhere classified</topic><topic>FOS: Agricultural biotechnology</topic><toplevel>online_resources</toplevel><creatorcontrib>Tavares, Rafael Marcão</creatorcontrib><creatorcontrib>Cunha, João Paulo Arantes Rodrigues Da</creatorcontrib><creatorcontrib>Thales Cassemiro Alves</creatorcontrib><creatorcontrib>Alves, Guilherme Sousa</creatorcontrib><creatorcontrib>Silva, João Eduardo Ribeiro</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tavares, Rafael Marcão</au><au>Cunha, João Paulo Arantes Rodrigues Da</au><au>Thales Cassemiro Alves</au><au>Alves, Guilherme Sousa</au><au>Silva, João Eduardo Ribeiro</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Study of a droplet electrification system in a backpack sprayer in a Faraday cage</title><date>2017-12-05</date><risdate>2017</risdate><abstract>ABSTRACT This study evaluated the factors affecting the charge/mass ratio (Q/M) generated by a droplet electrification system in a backpack sprayer with an electrostatic kit, using a Faraday cage. Two experiments were conducted in completely randomized design to determine the effect of application rate, the distance between the nozzle and the target, and spraying mixtures on performance of the droplet electrification system. The first study evaluated four distances (0, 0.5, 1.0, and 2.0 m) between the nozzle and the Faraday cage; the second study was conducted in a factorial design, with five tank mixtures and five flow rates (0.25, 0.76, 1.00, 1.45, and 1.58 L min-1). The Q/M ratio was determined using a multimeter by measuring the electric current from the volume of mixture sprayed in the Faraday cage, which was divided by the respective liquid mass. Droplet spectrum was analyzed by a particle analyzer using laser diffraction. The Q/M ratio became smaller as the spraying flow rate increased, similarly as observed with increasing distances of the electrostatic nozzle from the cage entrance. The Q/M ratio increased with the addition of mineral oil, vegetable oil, and insecticide to the spraying mixture. Flow rate, distance between the nozzle and the target, and the spraying mixture affected the electrostatic spraying efficiency.</abstract><pub>SciELO journals</pub><doi>10.6084/m9.figshare.5668078</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.5668078 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_5668078 |
source | DataCite |
subjects | Agricultural Biotechnology not elsewhere classified FOS: Agricultural biotechnology |
title | Study of a droplet electrification system in a backpack sprayer in a Faraday cage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Tavares,%20Rafael%20Marc%C3%A3o&rft.date=2017-12-05&rft_id=info:doi/10.6084/m9.figshare.5668078&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_5668078%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |