Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH

The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that ut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yamada, N.A., Rector, L.S., Tsang, P., Carr, E., Scheffer, A., Sederberg, M.C., Aston, M.E., Ach, R.A., Tsalenko, A., Sampas, N.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yamada, N.A.
Rector, L.S.
Tsang, P.
Carr, E.
Scheffer, A.
Sederberg, M.C.
Aston, M.E.
Ach, R.A.
Tsalenko, A.
Sampas, N.
description The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (>150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.
doi_str_mv 10.6084/m9.figshare.5121586
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_5121586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_5121586</sourcerecordid><originalsourceid>FETCH-LOGICAL-d896-c639e1a8bda842697f063f8d55a5579a1278442c4f7ae89ac0a8dc921576056c3</originalsourceid><addsrcrecordid>eNo1kL1OwzAYALMwoMITsPgFEvJnx2aDijSViiqRijX6an9OLTlx5DhC5ekpUKbbTrqLoocsTVjKy8dBJNr08wk8JjTLM8rZbfTZLtNkccAxgD-TNwjoDViinX8iH2ZewJovCMaNxGlSmxHjVoJFssHRDUaSNvhFhsUjOZ7J3prejYu06IJRGL_AjIo0pj_F7zg7u_yK6m3b3EU3GuyM91euokP9elg38W6_2a6fd7HigsWSFQIz4EcFvMyZqHTKCs0VpUBpJSDLK16WuSx1BcgFyBS4kuLSVrGUMlmsouJPqyCANAG7yZvhUtplafdzpRtE93-lu14pvgFkdV_X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH</title><source>DataCite</source><creator>Yamada, N.A. ; Rector, L.S. ; Tsang, P. ; Carr, E. ; Scheffer, A. ; Sederberg, M.C. ; Aston, M.E. ; Ach, R.A. ; Tsalenko, A. ; Sampas, N.</creator><creatorcontrib>Yamada, N.A. ; Rector, L.S. ; Tsang, P. ; Carr, E. ; Scheffer, A. ; Sederberg, M.C. ; Aston, M.E. ; Ach, R.A. ; Tsalenko, A. ; Sampas, N.</creatorcontrib><description>The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (&gt;150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.</description><identifier>DOI: 10.6084/m9.figshare.5121586</identifier><language>eng</language><publisher>Karger Publishers</publisher><subject>Medicine</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.5121586$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yamada, N.A.</creatorcontrib><creatorcontrib>Rector, L.S.</creatorcontrib><creatorcontrib>Tsang, P.</creatorcontrib><creatorcontrib>Carr, E.</creatorcontrib><creatorcontrib>Scheffer, A.</creatorcontrib><creatorcontrib>Sederberg, M.C.</creatorcontrib><creatorcontrib>Aston, M.E.</creatorcontrib><creatorcontrib>Ach, R.A.</creatorcontrib><creatorcontrib>Tsalenko, A.</creatorcontrib><creatorcontrib>Sampas, N.</creatorcontrib><title>Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH</title><description>The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (&gt;150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.</description><subject>Medicine</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kL1OwzAYALMwoMITsPgFEvJnx2aDijSViiqRijX6an9OLTlx5DhC5ekpUKbbTrqLoocsTVjKy8dBJNr08wk8JjTLM8rZbfTZLtNkccAxgD-TNwjoDViinX8iH2ZewJovCMaNxGlSmxHjVoJFssHRDUaSNvhFhsUjOZ7J3prejYu06IJRGL_AjIo0pj_F7zg7u_yK6m3b3EU3GuyM91euokP9elg38W6_2a6fd7HigsWSFQIz4EcFvMyZqHTKCs0VpUBpJSDLK16WuSx1BcgFyBS4kuLSVrGUMlmsouJPqyCANAG7yZvhUtplafdzpRtE93-lu14pvgFkdV_X</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Yamada, N.A.</creator><creator>Rector, L.S.</creator><creator>Tsang, P.</creator><creator>Carr, E.</creator><creator>Scheffer, A.</creator><creator>Sederberg, M.C.</creator><creator>Aston, M.E.</creator><creator>Ach, R.A.</creator><creator>Tsalenko, A.</creator><creator>Sampas, N.</creator><general>Karger Publishers</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20170620</creationdate><title>Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH</title><author>Yamada, N.A. ; Rector, L.S. ; Tsang, P. ; Carr, E. ; Scheffer, A. ; Sederberg, M.C. ; Aston, M.E. ; Ach, R.A. ; Tsalenko, A. ; Sampas, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d896-c639e1a8bda842697f063f8d55a5579a1278442c4f7ae89ac0a8dc921576056c3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Medicine</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamada, N.A.</creatorcontrib><creatorcontrib>Rector, L.S.</creatorcontrib><creatorcontrib>Tsang, P.</creatorcontrib><creatorcontrib>Carr, E.</creatorcontrib><creatorcontrib>Scheffer, A.</creatorcontrib><creatorcontrib>Sederberg, M.C.</creatorcontrib><creatorcontrib>Aston, M.E.</creatorcontrib><creatorcontrib>Ach, R.A.</creatorcontrib><creatorcontrib>Tsalenko, A.</creatorcontrib><creatorcontrib>Sampas, N.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamada, N.A.</au><au>Rector, L.S.</au><au>Tsang, P.</au><au>Carr, E.</au><au>Scheffer, A.</au><au>Sederberg, M.C.</au><au>Aston, M.E.</au><au>Ach, R.A.</au><au>Tsalenko, A.</au><au>Sampas, N.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH</title><date>2017-06-20</date><risdate>2017</risdate><abstract>The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. To address this concern, we established a robust, high-resolution fluorescence in situ hybridization (FISH) method that utilizes probes derived from high complexity libraries of long oligonucleotides (&gt;150 mers) synthesized in massively parallel reactions. In silico selected oligonucleotides, targeted to only the most informative elements in 18 genomic regions of interest, eliminated the need for suppressive hybridization reagents. Because of the inherent flexibility in our probe design methods, we readily visualized regions as small as 6.7 kb with high specificity on human metaphase chromosomes, resulting in an overall success rate of 94%. Two-color FISH over a 479-kb duplication, initially reported as being identical in 2 individuals, revealed distinct 2-color patterns representing direct and inverted duplicons, demonstrating that visualization by high-resolution FISH provides further insight in the fine-scale complexity of genomic structures. The ability to design FISH probes for any sequenced genome along with the ease, reproducibility, and high level of accuracy of this technique suggests that it will be powerful for routine analysis of previously difficult genomic regions and structures.</abstract><pub>Karger Publishers</pub><doi>10.6084/m9.figshare.5121586</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.5121586
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_5121586
source DataCite
subjects Medicine
title Supplementary Material for: Visualization of Fine-Scale Genomic Structure by Oligonucleotide-Based High-Resolution FISH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Yamada,%20N.A.&rft.date=2017-06-20&rft_id=info:doi/10.6084/m9.figshare.5121586&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_5121586%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true