Development and performance of a parsimonious model to estimate temperature in sewer networks
This paper presents a model (inspired by another model) to calculate water temperature in free-surface flow with two main innovations: the convective heat transfer occurs only at the wetted perimeter of pipes, and the model was integrated to commercial software used for hydraulic calculations in dra...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Elías-Maxil, Jorge A. Hofman, Jan Wols, Bas Francois Clemens Hoek, Jan Peter Van Der Rietveld, Luuk |
description | This paper presents a model (inspired by another model) to calculate water temperature in free-surface flow with two main innovations: the convective heat transfer occurs only at the wetted perimeter of pipes, and the model was integrated to commercial software used for hydraulic calculations in drainage systems. Given these innovations, we could reduce the number of modeling input data to calculate the temperature of water and soil in the radial and tangential directions along the pipes, with the advantages of using industry-standard software. To test the performance of the model, it was firstly calibrated in two sets of experiments (to calibrate the hydraulic and the thermal parameters separately), and benchmarked with a third controlled discharge against the case model. The results indicate that in unsteady-state situations the parsimonious model can be twice as accurate as the underlying model because the parsimonious model considers the hydraulic influence of sewer infrastructure. |
doi_str_mv | 10.6084/m9.figshare.4600102 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_4600102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_4600102</sourcerecordid><originalsourceid>FETCH-LOGICAL-d892-73ad08ddee5c752ea5ca798f7896f26d476f19301053856118c6569117ae63733</originalsourceid><addsrcrecordid>eNo1j7tOwzAYRrMwoMITsPgFEuw4vo2oXKVKLF2R9Sv-DRaxHdkuFW9PEWX6pvPpnK67YXSQVE-30Qw-vNcPKDhMklJGx8vu7R6_cMlrxNQIJEdWLD6XCGlGkj0BskKpIeYU8qGSmB0upGWCtYUIDUnDeEKgHQqSkEjFIxaSsB1z-axX3YWHpeL1eTfd_vFhv33ud69PL9u7Xe-0GXvFwVHtHKKYlRgRxAzKaK-0kX6UblLSM8NPwoJrIRnTsxTSMKYAJVecbzr-d-ugwRwa2rWc7Mq3ZdT-ttto7H-7PbfzHy0GVqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Development and performance of a parsimonious model to estimate temperature in sewer networks</title><source>DataCite</source><creator>Elías-Maxil, Jorge A. ; Hofman, Jan ; Wols, Bas ; Francois Clemens ; Hoek, Jan Peter Van Der ; Rietveld, Luuk</creator><creatorcontrib>Elías-Maxil, Jorge A. ; Hofman, Jan ; Wols, Bas ; Francois Clemens ; Hoek, Jan Peter Van Der ; Rietveld, Luuk</creatorcontrib><description>This paper presents a model (inspired by another model) to calculate water temperature in free-surface flow with two main innovations: the convective heat transfer occurs only at the wetted perimeter of pipes, and the model was integrated to commercial software used for hydraulic calculations in drainage systems. Given these innovations, we could reduce the number of modeling input data to calculate the temperature of water and soil in the radial and tangential directions along the pipes, with the advantages of using industry-standard software. To test the performance of the model, it was firstly calibrated in two sets of experiments (to calibrate the hydraulic and the thermal parameters separately), and benchmarked with a third controlled discharge against the case model. The results indicate that in unsteady-state situations the parsimonious model can be twice as accurate as the underlying model because the parsimonious model considers the hydraulic influence of sewer infrastructure.</description><identifier>DOI: 10.6084/m9.figshare.4600102</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Biological Sciences not elsewhere classified ; Environmental Sciences not elsewhere classified ; FOS: Biological sciences ; FOS: Computer and information sciences ; FOS: Earth and related environmental sciences ; Information Systems not elsewhere classified ; Medicine ; Science Policy</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.4600102$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Elías-Maxil, Jorge A.</creatorcontrib><creatorcontrib>Hofman, Jan</creatorcontrib><creatorcontrib>Wols, Bas</creatorcontrib><creatorcontrib>Francois Clemens</creatorcontrib><creatorcontrib>Hoek, Jan Peter Van Der</creatorcontrib><creatorcontrib>Rietveld, Luuk</creatorcontrib><title>Development and performance of a parsimonious model to estimate temperature in sewer networks</title><description>This paper presents a model (inspired by another model) to calculate water temperature in free-surface flow with two main innovations: the convective heat transfer occurs only at the wetted perimeter of pipes, and the model was integrated to commercial software used for hydraulic calculations in drainage systems. Given these innovations, we could reduce the number of modeling input data to calculate the temperature of water and soil in the radial and tangential directions along the pipes, with the advantages of using industry-standard software. To test the performance of the model, it was firstly calibrated in two sets of experiments (to calibrate the hydraulic and the thermal parameters separately), and benchmarked with a third controlled discharge against the case model. The results indicate that in unsteady-state situations the parsimonious model can be twice as accurate as the underlying model because the parsimonious model considers the hydraulic influence of sewer infrastructure.</description><subject>Biological Sciences not elsewhere classified</subject><subject>Environmental Sciences not elsewhere classified</subject><subject>FOS: Biological sciences</subject><subject>FOS: Computer and information sciences</subject><subject>FOS: Earth and related environmental sciences</subject><subject>Information Systems not elsewhere classified</subject><subject>Medicine</subject><subject>Science Policy</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j7tOwzAYRrMwoMITsPgFEuw4vo2oXKVKLF2R9Sv-DRaxHdkuFW9PEWX6pvPpnK67YXSQVE-30Qw-vNcPKDhMklJGx8vu7R6_cMlrxNQIJEdWLD6XCGlGkj0BskKpIeYU8qGSmB0upGWCtYUIDUnDeEKgHQqSkEjFIxaSsB1z-axX3YWHpeL1eTfd_vFhv33ud69PL9u7Xe-0GXvFwVHtHKKYlRgRxAzKaK-0kX6UblLSM8NPwoJrIRnTsxTSMKYAJVecbzr-d-ugwRwa2rWc7Mq3ZdT-ttto7H-7PbfzHy0GVqA</recordid><startdate>20170131</startdate><enddate>20170131</enddate><creator>Elías-Maxil, Jorge A.</creator><creator>Hofman, Jan</creator><creator>Wols, Bas</creator><creator>Francois Clemens</creator><creator>Hoek, Jan Peter Van Der</creator><creator>Rietveld, Luuk</creator><general>Taylor & Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20170131</creationdate><title>Development and performance of a parsimonious model to estimate temperature in sewer networks</title><author>Elías-Maxil, Jorge A. ; Hofman, Jan ; Wols, Bas ; Francois Clemens ; Hoek, Jan Peter Van Der ; Rietveld, Luuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d892-73ad08ddee5c752ea5ca798f7896f26d476f19301053856118c6569117ae63733</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences not elsewhere classified</topic><topic>Environmental Sciences not elsewhere classified</topic><topic>FOS: Biological sciences</topic><topic>FOS: Computer and information sciences</topic><topic>FOS: Earth and related environmental sciences</topic><topic>Information Systems not elsewhere classified</topic><topic>Medicine</topic><topic>Science Policy</topic><toplevel>online_resources</toplevel><creatorcontrib>Elías-Maxil, Jorge A.</creatorcontrib><creatorcontrib>Hofman, Jan</creatorcontrib><creatorcontrib>Wols, Bas</creatorcontrib><creatorcontrib>Francois Clemens</creatorcontrib><creatorcontrib>Hoek, Jan Peter Van Der</creatorcontrib><creatorcontrib>Rietveld, Luuk</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elías-Maxil, Jorge A.</au><au>Hofman, Jan</au><au>Wols, Bas</au><au>Francois Clemens</au><au>Hoek, Jan Peter Van Der</au><au>Rietveld, Luuk</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Development and performance of a parsimonious model to estimate temperature in sewer networks</title><date>2017-01-31</date><risdate>2017</risdate><abstract>This paper presents a model (inspired by another model) to calculate water temperature in free-surface flow with two main innovations: the convective heat transfer occurs only at the wetted perimeter of pipes, and the model was integrated to commercial software used for hydraulic calculations in drainage systems. Given these innovations, we could reduce the number of modeling input data to calculate the temperature of water and soil in the radial and tangential directions along the pipes, with the advantages of using industry-standard software. To test the performance of the model, it was firstly calibrated in two sets of experiments (to calibrate the hydraulic and the thermal parameters separately), and benchmarked with a third controlled discharge against the case model. The results indicate that in unsteady-state situations the parsimonious model can be twice as accurate as the underlying model because the parsimonious model considers the hydraulic influence of sewer infrastructure.</abstract><pub>Taylor & Francis</pub><doi>10.6084/m9.figshare.4600102</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.4600102 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_4600102 |
source | DataCite |
subjects | Biological Sciences not elsewhere classified Environmental Sciences not elsewhere classified FOS: Biological sciences FOS: Computer and information sciences FOS: Earth and related environmental sciences Information Systems not elsewhere classified Medicine Science Policy |
title | Development and performance of a parsimonious model to estimate temperature in sewer networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=El%C3%ADas-Maxil,%20Jorge%20A.&rft.date=2017-01-31&rft_id=info:doi/10.6084/m9.figshare.4600102&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_4600102%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |