Normal human knee articular cartilage

Copyright information:Taken from "High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery"Arthritis Research & Therapy 2005;7(2):R318-R323.Published online 17 Jan 2005PMCID:PMC1065329.Copyright © 2005 Li et al.; licensee BioMed Central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xingde Li, Martin, Scott, Pitris, Costas, Ghanta, Ravi, Stamper, Debra L, Harman, Michelle, Fujimoto, James G, Brezinski, Mark E
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Xingde Li
Martin, Scott
Pitris, Costas
Ghanta, Ravi
Stamper, Debra L
Harman, Michelle
Fujimoto, James G
Brezinski, Mark E
description Copyright information:Taken from "High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery"Arthritis Research & Therapy 2005;7(2):R318-R323.Published online 17 Jan 2005PMCID:PMC1065329.Copyright © 2005 Li et al.; licensee BioMed Central Ltd. The optical coherence tomography (OCT) image of the cartilage is relatively thick and uniform. The pronounced banding pattern on the OCT image is due to the birefringence of the highly organized structure of the collagen (red arrows). The alternating maximum and minimum intensities are due to changes in back scattering as light travels through the tissue while the plane of light polarization rotates. Previous work has shown that it is due to the presence of organized collagen that alters the polarization state of the light. Note: darker gray scale represents higher-intensity back scattering. The corresponding histology is shown in .
doi_str_mv 10.6084/m9.figshare.4342
format Image
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_4342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_4342</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_43423</originalsourceid><addsrcrecordid>eNpjYJAwNNAzM7Aw0c-11EvLTC_OSCxK1TMxNjHiZFD1yy_KTcxRyCjNTcxTyM5LTVVILCrJTC7NSSxSSAYxcxLTU3kYWNMSc4pTeaE0N4OBm2uIs4duSmJJYnJmSWp8QVFmbmJRZbyhQTzIpvhcy3iYTfEgm4zJ0AIAegA6Ig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Normal human knee articular cartilage</title><source>DataCite</source><creator>Xingde Li ; Martin, Scott ; Pitris, Costas ; Ghanta, Ravi ; Stamper, Debra L ; Harman, Michelle ; Fujimoto, James G ; Brezinski, Mark E</creator><creatorcontrib>Xingde Li ; Martin, Scott ; Pitris, Costas ; Ghanta, Ravi ; Stamper, Debra L ; Harman, Michelle ; Fujimoto, James G ; Brezinski, Mark E</creatorcontrib><description>Copyright information:Taken from "High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery"Arthritis Research &amp; Therapy 2005;7(2):R318-R323.Published online 17 Jan 2005PMCID:PMC1065329.Copyright © 2005 Li et al.; licensee BioMed Central Ltd. The optical coherence tomography (OCT) image of the cartilage is relatively thick and uniform. The pronounced banding pattern on the OCT image is due to the birefringence of the highly organized structure of the collagen (red arrows). The alternating maximum and minimum intensities are due to changes in back scattering as light travels through the tissue while the plane of light polarization rotates. Previous work has shown that it is due to the presence of organized collagen that alters the polarization state of the light. Note: darker gray scale represents higher-intensity back scattering. The corresponding histology is shown in .</description><identifier>DOI: 10.6084/m9.figshare.4342</identifier><language>eng</language><publisher>figshare</publisher><subject>Uncategorized</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.4342$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Xingde Li</creatorcontrib><creatorcontrib>Martin, Scott</creatorcontrib><creatorcontrib>Pitris, Costas</creatorcontrib><creatorcontrib>Ghanta, Ravi</creatorcontrib><creatorcontrib>Stamper, Debra L</creatorcontrib><creatorcontrib>Harman, Michelle</creatorcontrib><creatorcontrib>Fujimoto, James G</creatorcontrib><creatorcontrib>Brezinski, Mark E</creatorcontrib><title>Normal human knee articular cartilage</title><description>Copyright information:Taken from "High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery"Arthritis Research &amp; Therapy 2005;7(2):R318-R323.Published online 17 Jan 2005PMCID:PMC1065329.Copyright © 2005 Li et al.; licensee BioMed Central Ltd. The optical coherence tomography (OCT) image of the cartilage is relatively thick and uniform. The pronounced banding pattern on the OCT image is due to the birefringence of the highly organized structure of the collagen (red arrows). The alternating maximum and minimum intensities are due to changes in back scattering as light travels through the tissue while the plane of light polarization rotates. Previous work has shown that it is due to the presence of organized collagen that alters the polarization state of the light. Note: darker gray scale represents higher-intensity back scattering. The corresponding histology is shown in .</description><subject>Uncategorized</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2011</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYJAwNNAzM7Aw0c-11EvLTC_OSCxK1TMxNjHiZFD1yy_KTcxRyCjNTcxTyM5LTVVILCrJTC7NSSxSSAYxcxLTU3kYWNMSc4pTeaE0N4OBm2uIs4duSmJJYnJmSWp8QVFmbmJRZbyhQTzIpvhcy3iYTfEgm4zJ0AIAegA6Ig</recordid><startdate>20111230</startdate><enddate>20111230</enddate><creator>Xingde Li</creator><creator>Martin, Scott</creator><creator>Pitris, Costas</creator><creator>Ghanta, Ravi</creator><creator>Stamper, Debra L</creator><creator>Harman, Michelle</creator><creator>Fujimoto, James G</creator><creator>Brezinski, Mark E</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20111230</creationdate><title>Normal human knee articular cartilage</title><author>Xingde Li ; Martin, Scott ; Pitris, Costas ; Ghanta, Ravi ; Stamper, Debra L ; Harman, Michelle ; Fujimoto, James G ; Brezinski, Mark E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_43423</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Uncategorized</topic><toplevel>online_resources</toplevel><creatorcontrib>Xingde Li</creatorcontrib><creatorcontrib>Martin, Scott</creatorcontrib><creatorcontrib>Pitris, Costas</creatorcontrib><creatorcontrib>Ghanta, Ravi</creatorcontrib><creatorcontrib>Stamper, Debra L</creatorcontrib><creatorcontrib>Harman, Michelle</creatorcontrib><creatorcontrib>Fujimoto, James G</creatorcontrib><creatorcontrib>Brezinski, Mark E</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xingde Li</au><au>Martin, Scott</au><au>Pitris, Costas</au><au>Ghanta, Ravi</au><au>Stamper, Debra L</au><au>Harman, Michelle</au><au>Fujimoto, James G</au><au>Brezinski, Mark E</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Normal human knee articular cartilage</title><date>2011-12-30</date><risdate>2011</risdate><abstract>Copyright information:Taken from "High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery"Arthritis Research &amp; Therapy 2005;7(2):R318-R323.Published online 17 Jan 2005PMCID:PMC1065329.Copyright © 2005 Li et al.; licensee BioMed Central Ltd. The optical coherence tomography (OCT) image of the cartilage is relatively thick and uniform. The pronounced banding pattern on the OCT image is due to the birefringence of the highly organized structure of the collagen (red arrows). The alternating maximum and minimum intensities are due to changes in back scattering as light travels through the tissue while the plane of light polarization rotates. Previous work has shown that it is due to the presence of organized collagen that alters the polarization state of the light. Note: darker gray scale represents higher-intensity back scattering. The corresponding histology is shown in .</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.4342</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.4342
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_4342
source DataCite
subjects Uncategorized
title Normal human knee articular cartilage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Xingde%20Li&rft.date=2011-12-30&rft_id=info:doi/10.6084/m9.figshare.4342&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_4342%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true