Make Some Noise: Generating Data from Imperfect Factor Models

Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kracht, Justin D., Waller, Niels G.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kracht, Justin D.
Waller, Niels G.
description Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible R library. Additional materials (e.g., R code, supplemental results) are available at https://osf.io/vxr8d/.
doi_str_mv 10.6084/m9.figshare.27242529
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_27242529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_27242529</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_272425293</originalsourceid><addsrcrecordid>eNqdzr0OgjAUQOEuDkZ9A4f7AiJU_MHESUUdcNG9uYFbbKSU3Hbx7dVEXsDpTCf5hJgmcbSKN-ncZpE2tX8gUyTXMpVLmQ3FrsAnwc1ZgqsznrZwopYYg2lrOGBA0OwsXGxHrKkMkGMZHEPhKmr8WAw0Np4mv45Emh_v-_Os-pylCaQ6Nhb5pZJYfRXKZqpXqF6x-HN7AxgmRIg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Make Some Noise: Generating Data from Imperfect Factor Models</title><source>DataCite</source><creator>Kracht, Justin D. ; Waller, Niels G.</creator><creatorcontrib>Kracht, Justin D. ; Waller, Niels G.</creatorcontrib><description>Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible R library. Additional materials (e.g., R code, supplemental results) are available at https://osf.io/vxr8d/.</description><identifier>DOI: 10.6084/m9.figshare.27242529</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biochemistry ; Biological Sciences not elsewhere classified ; Computational Biology ; FOS: Biological sciences ; Genetics ; Hematology ; Information Systems not elsewhere classified ; Mathematical Sciences not elsewhere classified ; Molecular Biology ; Pharmacology</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.27242529$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kracht, Justin D.</creatorcontrib><creatorcontrib>Waller, Niels G.</creatorcontrib><title>Make Some Noise: Generating Data from Imperfect Factor Models</title><description>Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible R library. Additional materials (e.g., R code, supplemental results) are available at https://osf.io/vxr8d/.</description><subject>Biochemistry</subject><subject>Biological Sciences not elsewhere classified</subject><subject>Computational Biology</subject><subject>FOS: Biological sciences</subject><subject>Genetics</subject><subject>Hematology</subject><subject>Information Systems not elsewhere classified</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Molecular Biology</subject><subject>Pharmacology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqdzr0OgjAUQOEuDkZ9A4f7AiJU_MHESUUdcNG9uYFbbKSU3Hbx7dVEXsDpTCf5hJgmcbSKN-ncZpE2tX8gUyTXMpVLmQ3FrsAnwc1ZgqsznrZwopYYg2lrOGBA0OwsXGxHrKkMkGMZHEPhKmr8WAw0Np4mv45Emh_v-_Os-pylCaQ6Nhb5pZJYfRXKZqpXqF6x-HN7AxgmRIg</recordid><startdate>20241016</startdate><enddate>20241016</enddate><creator>Kracht, Justin D.</creator><creator>Waller, Niels G.</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20241016</creationdate><title>Make Some Noise: Generating Data from Imperfect Factor Models</title><author>Kracht, Justin D. ; Waller, Niels G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_272425293</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biological Sciences not elsewhere classified</topic><topic>Computational Biology</topic><topic>FOS: Biological sciences</topic><topic>Genetics</topic><topic>Hematology</topic><topic>Information Systems not elsewhere classified</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Molecular Biology</topic><topic>Pharmacology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kracht, Justin D.</creatorcontrib><creatorcontrib>Waller, Niels G.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kracht, Justin D.</au><au>Waller, Niels G.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Make Some Noise: Generating Data from Imperfect Factor Models</title><date>2024-10-16</date><risdate>2024</risdate><abstract>Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible R library. Additional materials (e.g., R code, supplemental results) are available at https://osf.io/vxr8d/.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.27242529</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.27242529
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_27242529
source DataCite
subjects Biochemistry
Biological Sciences not elsewhere classified
Computational Biology
FOS: Biological sciences
Genetics
Hematology
Information Systems not elsewhere classified
Mathematical Sciences not elsewhere classified
Molecular Biology
Pharmacology
title Make Some Noise: Generating Data from Imperfect Factor Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Kracht,%20Justin%20D.&rft.date=2024-10-16&rft_id=info:doi/10.6084/m9.figshare.27242529&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_27242529%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true