Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model

Supplementary Material 1. Fig. A.1. Showing the pathogenic pathways and processes involved in NAFLD/NASH genesis through the KEGG pathway database, Fig. A.2. showing the involvement of the biochemical-RNA signatures in pathogenic mechanisms (Hippo signaling, TGF-β signaling, TNF signaling pathway, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matboli, Marwa, Abdelbaky, Ibrahim, Khaled, Abdelrahman, Khaled, Radwa, Hamady, Shaimaa, Farid, Laila M., Abouelkhair, Mariam B., El-Attar, Noha E., Farag Fathallah, Mohamed, Abd EL Hamid, Manal S., Elmakromy, Gena M., Ali, Marwa
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Matboli, Marwa
Abdelbaky, Ibrahim
Khaled, Abdelrahman
Khaled, Radwa
Hamady, Shaimaa
Farid, Laila M.
Abouelkhair, Mariam B.
El-Attar, Noha E.
Farag Fathallah, Mohamed
Abd EL Hamid, Manal S.
Elmakromy, Gena M.
Ali, Marwa
description Supplementary Material 1. Fig. A.1. Showing the pathogenic pathways and processes involved in NAFLD/NASH genesis through the KEGG pathway database, Fig. A.2. showing the involvement of the biochemical-RNA signatures in pathogenic mechanisms (Hippo signaling, TGF-β signaling, TNF signaling pathway, apoptosis, oxidative stress, and inflammatory response) through the KEGG pathway database, and GeneCards database; Fig. A.3. Validation that our selected mRNAs are key regulatory genes in gut microbiota, Fig. A.4. Validation of the interaction between the selected mRNAs and the retrieved miRNAs from mirwalk3; Fig. A.5. Validation of the relation of the candidate miRNAs to pathogenic mechanisms such as Hippo signaling, and TGF-β signaling through DIANA tools mirPath 3; Fig. A.6. Validation of the interaction between the selected miRNAs and the retrieved lncRNAs from mirwalk3 and DIANA-LncBase; Table A.1. The detailed differentially expressed genes in NASH were retrieved from the gene chip datasets GSE164760, GSE24807, and GSE126848, Table A.2. List of primer assays; Table A.3. Histopathological scoring grid for NAFLD/NASH liver sections.
doi_str_mv 10.6084/m9.figshare.26942928
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_26942928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_26942928</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_269429283</originalsourceid><addsrcrecordid>eNqdjzFuwzAMRbV0CNLeIAMvENd2DSMei6JFl2zdBVaibAIyZUjKkNP0qpWC5gKdiA_894iv1KFrm7E9Dc_r1Die04KRmn6chn7qTzv182otZw6CHhx7gg6CgzOahYXAE0ZhmeEbE1lgS5LZscFKwBZyzZUkzJdIMJNQAhcibJEsm1ut-Gy8zECukuYKLCD1oQlL8Gwg5YKHhbaizZwAhdciXYMl_6geHPpET393r4aP96-3z6PFjIYz6S2WdrzqrtV1p14nfd-p7ztf_on9AvG6ask</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model</title><source>DataCite</source><creator>Matboli, Marwa ; Abdelbaky, Ibrahim ; Khaled, Abdelrahman ; Khaled, Radwa ; Hamady, Shaimaa ; Farid, Laila M. ; Abouelkhair, Mariam B. ; El-Attar, Noha E. ; Farag Fathallah, Mohamed ; Abd EL Hamid, Manal S. ; Elmakromy, Gena M. ; Ali, Marwa</creator><creatorcontrib>Matboli, Marwa ; Abdelbaky, Ibrahim ; Khaled, Abdelrahman ; Khaled, Radwa ; Hamady, Shaimaa ; Farid, Laila M. ; Abouelkhair, Mariam B. ; El-Attar, Noha E. ; Farag Fathallah, Mohamed ; Abd EL Hamid, Manal S. ; Elmakromy, Gena M. ; Ali, Marwa</creatorcontrib><description>Supplementary Material 1. Fig. A.1. Showing the pathogenic pathways and processes involved in NAFLD/NASH genesis through the KEGG pathway database, Fig. A.2. showing the involvement of the biochemical-RNA signatures in pathogenic mechanisms (Hippo signaling, TGF-β signaling, TNF signaling pathway, apoptosis, oxidative stress, and inflammatory response) through the KEGG pathway database, and GeneCards database; Fig. A.3. Validation that our selected mRNAs are key regulatory genes in gut microbiota, Fig. A.4. Validation of the interaction between the selected mRNAs and the retrieved miRNAs from mirwalk3; Fig. A.5. Validation of the relation of the candidate miRNAs to pathogenic mechanisms such as Hippo signaling, and TGF-β signaling through DIANA tools mirPath 3; Fig. A.6. Validation of the interaction between the selected miRNAs and the retrieved lncRNAs from mirwalk3 and DIANA-LncBase; Table A.1. The detailed differentially expressed genes in NASH were retrieved from the gene chip datasets GSE164760, GSE24807, and GSE126848, Table A.2. List of primer assays; Table A.3. Histopathological scoring grid for NAFLD/NASH liver sections.</description><identifier>DOI: 10.6084/m9.figshare.26942928</identifier><language>eng</language><publisher>figshare</publisher><subject>Biochemistry ; Biological Sciences not elsewhere classified ; Chemical Sciences not elsewhere classified ; Environmental Sciences not elsewhere classified ; Information Systems not elsewhere classified ; Medicine ; Pharmacology</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.26942928$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Matboli, Marwa</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Khaled, Abdelrahman</creatorcontrib><creatorcontrib>Khaled, Radwa</creatorcontrib><creatorcontrib>Hamady, Shaimaa</creatorcontrib><creatorcontrib>Farid, Laila M.</creatorcontrib><creatorcontrib>Abouelkhair, Mariam B.</creatorcontrib><creatorcontrib>El-Attar, Noha E.</creatorcontrib><creatorcontrib>Farag Fathallah, Mohamed</creatorcontrib><creatorcontrib>Abd EL Hamid, Manal S.</creatorcontrib><creatorcontrib>Elmakromy, Gena M.</creatorcontrib><creatorcontrib>Ali, Marwa</creatorcontrib><title>Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model</title><description>Supplementary Material 1. Fig. A.1. Showing the pathogenic pathways and processes involved in NAFLD/NASH genesis through the KEGG pathway database, Fig. A.2. showing the involvement of the biochemical-RNA signatures in pathogenic mechanisms (Hippo signaling, TGF-β signaling, TNF signaling pathway, apoptosis, oxidative stress, and inflammatory response) through the KEGG pathway database, and GeneCards database; Fig. A.3. Validation that our selected mRNAs are key regulatory genes in gut microbiota, Fig. A.4. Validation of the interaction between the selected mRNAs and the retrieved miRNAs from mirwalk3; Fig. A.5. Validation of the relation of the candidate miRNAs to pathogenic mechanisms such as Hippo signaling, and TGF-β signaling through DIANA tools mirPath 3; Fig. A.6. Validation of the interaction between the selected miRNAs and the retrieved lncRNAs from mirwalk3 and DIANA-LncBase; Table A.1. The detailed differentially expressed genes in NASH were retrieved from the gene chip datasets GSE164760, GSE24807, and GSE126848, Table A.2. List of primer assays; Table A.3. Histopathological scoring grid for NAFLD/NASH liver sections.</description><subject>Biochemistry</subject><subject>Biological Sciences not elsewhere classified</subject><subject>Chemical Sciences not elsewhere classified</subject><subject>Environmental Sciences not elsewhere classified</subject><subject>Information Systems not elsewhere classified</subject><subject>Medicine</subject><subject>Pharmacology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjzFuwzAMRbV0CNLeIAMvENd2DSMei6JFl2zdBVaibAIyZUjKkNP0qpWC5gKdiA_894iv1KFrm7E9Dc_r1Die04KRmn6chn7qTzv182otZw6CHhx7gg6CgzOahYXAE0ZhmeEbE1lgS5LZscFKwBZyzZUkzJdIMJNQAhcibJEsm1ut-Gy8zECukuYKLCD1oQlL8Gwg5YKHhbaizZwAhdciXYMl_6geHPpET393r4aP96-3z6PFjIYz6S2WdrzqrtV1p14nfd-p7ztf_on9AvG6ask</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Matboli, Marwa</creator><creator>Abdelbaky, Ibrahim</creator><creator>Khaled, Abdelrahman</creator><creator>Khaled, Radwa</creator><creator>Hamady, Shaimaa</creator><creator>Farid, Laila M.</creator><creator>Abouelkhair, Mariam B.</creator><creator>El-Attar, Noha E.</creator><creator>Farag Fathallah, Mohamed</creator><creator>Abd EL Hamid, Manal S.</creator><creator>Elmakromy, Gena M.</creator><creator>Ali, Marwa</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20240905</creationdate><title>Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model</title><author>Matboli, Marwa ; Abdelbaky, Ibrahim ; Khaled, Abdelrahman ; Khaled, Radwa ; Hamady, Shaimaa ; Farid, Laila M. ; Abouelkhair, Mariam B. ; El-Attar, Noha E. ; Farag Fathallah, Mohamed ; Abd EL Hamid, Manal S. ; Elmakromy, Gena M. ; Ali, Marwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_269429283</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biological Sciences not elsewhere classified</topic><topic>Chemical Sciences not elsewhere classified</topic><topic>Environmental Sciences not elsewhere classified</topic><topic>Information Systems not elsewhere classified</topic><topic>Medicine</topic><topic>Pharmacology</topic><toplevel>online_resources</toplevel><creatorcontrib>Matboli, Marwa</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Khaled, Abdelrahman</creatorcontrib><creatorcontrib>Khaled, Radwa</creatorcontrib><creatorcontrib>Hamady, Shaimaa</creatorcontrib><creatorcontrib>Farid, Laila M.</creatorcontrib><creatorcontrib>Abouelkhair, Mariam B.</creatorcontrib><creatorcontrib>El-Attar, Noha E.</creatorcontrib><creatorcontrib>Farag Fathallah, Mohamed</creatorcontrib><creatorcontrib>Abd EL Hamid, Manal S.</creatorcontrib><creatorcontrib>Elmakromy, Gena M.</creatorcontrib><creatorcontrib>Ali, Marwa</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matboli, Marwa</au><au>Abdelbaky, Ibrahim</au><au>Khaled, Abdelrahman</au><au>Khaled, Radwa</au><au>Hamady, Shaimaa</au><au>Farid, Laila M.</au><au>Abouelkhair, Mariam B.</au><au>El-Attar, Noha E.</au><au>Farag Fathallah, Mohamed</au><au>Abd EL Hamid, Manal S.</au><au>Elmakromy, Gena M.</au><au>Ali, Marwa</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model</title><date>2024-09-05</date><risdate>2024</risdate><abstract>Supplementary Material 1. Fig. A.1. Showing the pathogenic pathways and processes involved in NAFLD/NASH genesis through the KEGG pathway database, Fig. A.2. showing the involvement of the biochemical-RNA signatures in pathogenic mechanisms (Hippo signaling, TGF-β signaling, TNF signaling pathway, apoptosis, oxidative stress, and inflammatory response) through the KEGG pathway database, and GeneCards database; Fig. A.3. Validation that our selected mRNAs are key regulatory genes in gut microbiota, Fig. A.4. Validation of the interaction between the selected mRNAs and the retrieved miRNAs from mirwalk3; Fig. A.5. Validation of the relation of the candidate miRNAs to pathogenic mechanisms such as Hippo signaling, and TGF-β signaling through DIANA tools mirPath 3; Fig. A.6. Validation of the interaction between the selected miRNAs and the retrieved lncRNAs from mirwalk3 and DIANA-LncBase; Table A.1. The detailed differentially expressed genes in NASH were retrieved from the gene chip datasets GSE164760, GSE24807, and GSE126848, Table A.2. List of primer assays; Table A.3. Histopathological scoring grid for NAFLD/NASH liver sections.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.26942928</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.26942928
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_26942928
source DataCite
subjects Biochemistry
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Environmental Sciences not elsewhere classified
Information Systems not elsewhere classified
Medicine
Pharmacology
title Additional file 1 of Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Matboli,%20Marwa&rft.date=2024-09-05&rft_id=info:doi/10.6084/m9.figshare.26942928&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_26942928%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true