Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics
Additional file 7: Figure S7. Figures for scMet program evaluation. A Correlation between the number of training iterations for the Conditional Variational Auto-Encoder (CVAE) model and the corresponding training loss and validation loss. B Correlation between the number of cell-type specific marker...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Bild |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yang, Guanwen Cheng, Jiangting Xu, Jiayi Shen, Chenyang Lu, Xuwei He, Chang Huang, Jiaqi He, Minke Cheng, Jie Wang, Hang |
description | Additional file 7: Figure S7. Figures for scMet program evaluation. A Correlation between the number of training iterations for the Conditional Variational Auto-Encoder (CVAE) model and the corresponding training loss and validation loss. B Correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and the accuracy of computational results (Left), and correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and computational time (Right). C Bar plot representing the cell type proportions obtained after deconvolution of TCGA RNA-seq data. D Line graph illustrating the gene expression correlation between the best-fitted scRNA-seq data and the original RNA-seq data. E Scatter plot depicting the correlation between gene expression of TCGA-CJ-5684-01A-11R-1541-07 RNA-seq data and the best-fitted scRNA-seq data. F Workflow illustrating the utilization of small sample scRNA-seq data to convert eight TCGA RNA-seq datasets into scRNA-seq data using scMet. CVAE: Conditional Variational Auto-Encoder. |
doi_str_mv | 10.6084/m9.figshare.26686431 |
format | Image |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_26686431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_26686431</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_266864313</originalsourceid><addsrcrecordid>eNqdj8FOwzAQRH3hgIA_4LA_0JDQKLTHCoG4tAfE3dram3SltR3sBSm_0S9uWtEf4DSj0cxIz5jHpq66etU-hXXV81AOmKl67rpV1y6bW3PceM_KKaJAz0LwAqmHLSnuk7CDAynlNFAk1gk4ghPCDI5EINN5dbEOs-OYAs7hL6GQh_0EheMgtLg0PncbKPT9Q3EuDoDRQxlReX7QjLG4zKOmwK7cm5sepdDDn96Z9v3t6_Vj4VHRsZIdMwfMk21qe0azYW2vaPaKtvzn7ASOH2UB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics</title><source>DataCite</source><creator>Yang, Guanwen ; Cheng, Jiangting ; Xu, Jiayi ; Shen, Chenyang ; Lu, Xuwei ; He, Chang ; Huang, Jiaqi ; He, Minke ; Cheng, Jie ; Wang, Hang</creator><creatorcontrib>Yang, Guanwen ; Cheng, Jiangting ; Xu, Jiayi ; Shen, Chenyang ; Lu, Xuwei ; He, Chang ; Huang, Jiaqi ; He, Minke ; Cheng, Jie ; Wang, Hang</creatorcontrib><description>Additional file 7: Figure S7. Figures for scMet program evaluation. A Correlation between the number of training iterations for the Conditional Variational Auto-Encoder (CVAE) model and the corresponding training loss and validation loss. B Correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and the accuracy of computational results (Left), and correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and computational time (Right). C Bar plot representing the cell type proportions obtained after deconvolution of TCGA RNA-seq data. D Line graph illustrating the gene expression correlation between the best-fitted scRNA-seq data and the original RNA-seq data. E Scatter plot depicting the correlation between gene expression of TCGA-CJ-5684-01A-11R-1541-07 RNA-seq data and the best-fitted scRNA-seq data. F Workflow illustrating the utilization of small sample scRNA-seq data to convert eight TCGA RNA-seq datasets into scRNA-seq data using scMet. CVAE: Conditional Variational Auto-Encoder.</description><identifier>DOI: 10.6084/m9.figshare.26686431</identifier><language>eng</language><publisher>figshare</publisher><subject>Biological Sciences not elsewhere classified ; Cancer ; Cell Biology ; Developmental Biology ; FOS: Biological sciences ; FOS: Clinical medicine ; Genetics ; Immunology ; Information Systems not elsewhere classified ; Pharmacology ; Physiology ; Plant Biology ; Virology</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0849-1196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.26686431$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yang, Guanwen</creatorcontrib><creatorcontrib>Cheng, Jiangting</creatorcontrib><creatorcontrib>Xu, Jiayi</creatorcontrib><creatorcontrib>Shen, Chenyang</creatorcontrib><creatorcontrib>Lu, Xuwei</creatorcontrib><creatorcontrib>He, Chang</creatorcontrib><creatorcontrib>Huang, Jiaqi</creatorcontrib><creatorcontrib>He, Minke</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><title>Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics</title><description>Additional file 7: Figure S7. Figures for scMet program evaluation. A Correlation between the number of training iterations for the Conditional Variational Auto-Encoder (CVAE) model and the corresponding training loss and validation loss. B Correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and the accuracy of computational results (Left), and correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and computational time (Right). C Bar plot representing the cell type proportions obtained after deconvolution of TCGA RNA-seq data. D Line graph illustrating the gene expression correlation between the best-fitted scRNA-seq data and the original RNA-seq data. E Scatter plot depicting the correlation between gene expression of TCGA-CJ-5684-01A-11R-1541-07 RNA-seq data and the best-fitted scRNA-seq data. F Workflow illustrating the utilization of small sample scRNA-seq data to convert eight TCGA RNA-seq datasets into scRNA-seq data using scMet. CVAE: Conditional Variational Auto-Encoder.</description><subject>Biological Sciences not elsewhere classified</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Developmental Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Clinical medicine</subject><subject>Genetics</subject><subject>Immunology</subject><subject>Information Systems not elsewhere classified</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Plant Biology</subject><subject>Virology</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2024</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdj8FOwzAQRH3hgIA_4LA_0JDQKLTHCoG4tAfE3dram3SltR3sBSm_0S9uWtEf4DSj0cxIz5jHpq66etU-hXXV81AOmKl67rpV1y6bW3PceM_KKaJAz0LwAqmHLSnuk7CDAynlNFAk1gk4ghPCDI5EINN5dbEOs-OYAs7hL6GQh_0EheMgtLg0PncbKPT9Q3EuDoDRQxlReX7QjLG4zKOmwK7cm5sepdDDn96Z9v3t6_Vj4VHRsZIdMwfMk21qe0azYW2vaPaKtvzn7ASOH2UB</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Yang, Guanwen</creator><creator>Cheng, Jiangting</creator><creator>Xu, Jiayi</creator><creator>Shen, Chenyang</creator><creator>Lu, Xuwei</creator><creator>He, Chang</creator><creator>Huang, Jiaqi</creator><creator>He, Minke</creator><creator>Cheng, Jie</creator><creator>Wang, Hang</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-0849-1196</orcidid></search><sort><creationdate>20240814</creationdate><title>Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics</title><author>Yang, Guanwen ; Cheng, Jiangting ; Xu, Jiayi ; Shen, Chenyang ; Lu, Xuwei ; He, Chang ; Huang, Jiaqi ; He, Minke ; Cheng, Jie ; Wang, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_266864313</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological Sciences not elsewhere classified</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Developmental Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Clinical medicine</topic><topic>Genetics</topic><topic>Immunology</topic><topic>Information Systems not elsewhere classified</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Plant Biology</topic><topic>Virology</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guanwen</creatorcontrib><creatorcontrib>Cheng, Jiangting</creatorcontrib><creatorcontrib>Xu, Jiayi</creatorcontrib><creatorcontrib>Shen, Chenyang</creatorcontrib><creatorcontrib>Lu, Xuwei</creatorcontrib><creatorcontrib>He, Chang</creatorcontrib><creatorcontrib>Huang, Jiaqi</creatorcontrib><creatorcontrib>He, Minke</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Guanwen</au><au>Cheng, Jiangting</au><au>Xu, Jiayi</au><au>Shen, Chenyang</au><au>Lu, Xuwei</au><au>He, Chang</au><au>Huang, Jiaqi</au><au>He, Minke</au><au>Cheng, Jie</au><au>Wang, Hang</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics</title><date>2024-08-14</date><risdate>2024</risdate><abstract>Additional file 7: Figure S7. Figures for scMet program evaluation. A Correlation between the number of training iterations for the Conditional Variational Auto-Encoder (CVAE) model and the corresponding training loss and validation loss. B Correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and the accuracy of computational results (Left), and correlation between the number of cell-type specific markers used for deconvolution of RNA sequencing data and computational time (Right). C Bar plot representing the cell type proportions obtained after deconvolution of TCGA RNA-seq data. D Line graph illustrating the gene expression correlation between the best-fitted scRNA-seq data and the original RNA-seq data. E Scatter plot depicting the correlation between gene expression of TCGA-CJ-5684-01A-11R-1541-07 RNA-seq data and the best-fitted scRNA-seq data. F Workflow illustrating the utilization of small sample scRNA-seq data to convert eight TCGA RNA-seq datasets into scRNA-seq data using scMet. CVAE: Conditional Variational Auto-Encoder.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.26686431</doi><orcidid>https://orcid.org/0000-0002-0849-1196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.26686431 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_26686431 |
source | DataCite |
subjects | Biological Sciences not elsewhere classified Cancer Cell Biology Developmental Biology FOS: Biological sciences FOS: Clinical medicine Genetics Immunology Information Systems not elsewhere classified Pharmacology Physiology Plant Biology Virology |
title | Additional file 7 of Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Yang,%20Guanwen&rft.date=2024-08-14&rft_id=info:doi/10.6084/m9.figshare.26686431&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_26686431%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |