Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources
The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Bild |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Silverstein, Kevin Lynch, Ben Joglekar, Alison K. B. |
description | The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences. |
doi_str_mv | 10.6084/m9.figshare.26510716 |
format | Image |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_26510716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_26510716</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_265107163</originalsourceid><addsrcrecordid>eNqdjrsKwkAQRbexEPUPLOYDTEx8xEenQbEU0XoZ4yQZsnHD7Fro12tAf8Dqwj0cOEoN4yhMouVsXK_CnAtXolA4SeZxtIiTrmrS55UEzoJ853uxhiMb6yEIYCuE1ecCXxKktm4enmCLIkwygkvjKjam5ZtCONhbe4MTOULJShIH3sLFs-EXweGYtsg-JCPXV50cjaPBd3tqtt-d00NwQ48Ze9KNcI3y1HGk23Bdr_QvXP_Cp39qb9TtVr8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><source>DataCite</source><creator>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</creator><creatorcontrib>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</creatorcontrib><description>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</description><identifier>DOI: 10.6084/m9.figshare.26510716</identifier><language>eng</language><publisher>figshare</publisher><subject>Applications in social sciences and education ; Other agricultural, veterinary and food sciences not elsewhere classified ; Spatial data and applications</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4955-3218 ; 0000-0001-7310-2022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.26510716$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Silverstein, Kevin</creatorcontrib><creatorcontrib>Lynch, Ben</creatorcontrib><creatorcontrib>Joglekar, Alison K. B.</creatorcontrib><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><description>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</description><subject>Applications in social sciences and education</subject><subject>Other agricultural, veterinary and food sciences not elsewhere classified</subject><subject>Spatial data and applications</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2024</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjrsKwkAQRbexEPUPLOYDTEx8xEenQbEU0XoZ4yQZsnHD7Fro12tAf8Dqwj0cOEoN4yhMouVsXK_CnAtXolA4SeZxtIiTrmrS55UEzoJ853uxhiMb6yEIYCuE1ecCXxKktm4enmCLIkwygkvjKjam5ZtCONhbe4MTOULJShIH3sLFs-EXweGYtsg-JCPXV50cjaPBd3tqtt-d00NwQ48Ze9KNcI3y1HGk23Bdr_QvXP_Cp39qb9TtVr8</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Silverstein, Kevin</creator><creator>Lynch, Ben</creator><creator>Joglekar, Alison K. B.</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-4955-3218</orcidid><orcidid>https://orcid.org/0000-0001-7310-2022</orcidid></search><sort><creationdate>20240807</creationdate><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><author>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_265107163</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications in social sciences and education</topic><topic>Other agricultural, veterinary and food sciences not elsewhere classified</topic><topic>Spatial data and applications</topic><toplevel>online_resources</toplevel><creatorcontrib>Silverstein, Kevin</creatorcontrib><creatorcontrib>Lynch, Ben</creatorcontrib><creatorcontrib>Joglekar, Alison K. B.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silverstein, Kevin</au><au>Lynch, Ben</au><au>Joglekar, Alison K. B.</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><date>2024-08-07</date><risdate>2024</risdate><abstract>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.26510716</doi><orcidid>https://orcid.org/0000-0002-4955-3218</orcidid><orcidid>https://orcid.org/0000-0001-7310-2022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.26510716 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_26510716 |
source | DataCite |
subjects | Applications in social sciences and education Other agricultural, veterinary and food sciences not elsewhere classified Spatial data and applications |
title | Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Silverstein,%20Kevin&rft.date=2024-08-07&rft_id=info:doi/10.6084/m9.figshare.26510716&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_26510716%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |