Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources

The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Silverstein, Kevin, Lynch, Ben, Joglekar, Alison K. B.
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Silverstein, Kevin
Lynch, Ben
Joglekar, Alison K. B.
description The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.
doi_str_mv 10.6084/m9.figshare.26510716
format Image
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_26510716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_26510716</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_265107163</originalsourceid><addsrcrecordid>eNqdjrsKwkAQRbexEPUPLOYDTEx8xEenQbEU0XoZ4yQZsnHD7Fro12tAf8Dqwj0cOEoN4yhMouVsXK_CnAtXolA4SeZxtIiTrmrS55UEzoJ853uxhiMb6yEIYCuE1ecCXxKktm4enmCLIkwygkvjKjam5ZtCONhbe4MTOULJShIH3sLFs-EXweGYtsg-JCPXV50cjaPBd3tqtt-d00NwQ48Ze9KNcI3y1HGk23Bdr_QvXP_Cp39qb9TtVr8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><source>DataCite</source><creator>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</creator><creatorcontrib>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</creatorcontrib><description>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</description><identifier>DOI: 10.6084/m9.figshare.26510716</identifier><language>eng</language><publisher>figshare</publisher><subject>Applications in social sciences and education ; Other agricultural, veterinary and food sciences not elsewhere classified ; Spatial data and applications</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4955-3218 ; 0000-0001-7310-2022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.26510716$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Silverstein, Kevin</creatorcontrib><creatorcontrib>Lynch, Ben</creatorcontrib><creatorcontrib>Joglekar, Alison K. B.</creatorcontrib><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><description>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</description><subject>Applications in social sciences and education</subject><subject>Other agricultural, veterinary and food sciences not elsewhere classified</subject><subject>Spatial data and applications</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2024</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjrsKwkAQRbexEPUPLOYDTEx8xEenQbEU0XoZ4yQZsnHD7Fro12tAf8Dqwj0cOEoN4yhMouVsXK_CnAtXolA4SeZxtIiTrmrS55UEzoJ853uxhiMb6yEIYCuE1ecCXxKktm4enmCLIkwygkvjKjam5ZtCONhbe4MTOULJShIH3sLFs-EXweGYtsg-JCPXV50cjaPBd3tqtt-d00NwQ48Ze9KNcI3y1HGk23Bdr_QvXP_Cp39qb9TtVr8</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Silverstein, Kevin</creator><creator>Lynch, Ben</creator><creator>Joglekar, Alison K. B.</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-4955-3218</orcidid><orcidid>https://orcid.org/0000-0001-7310-2022</orcidid></search><sort><creationdate>20240807</creationdate><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><author>Silverstein, Kevin ; Lynch, Ben ; Joglekar, Alison K. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_265107163</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications in social sciences and education</topic><topic>Other agricultural, veterinary and food sciences not elsewhere classified</topic><topic>Spatial data and applications</topic><toplevel>online_resources</toplevel><creatorcontrib>Silverstein, Kevin</creatorcontrib><creatorcontrib>Lynch, Ben</creatorcontrib><creatorcontrib>Joglekar, Alison K. B.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silverstein, Kevin</au><au>Lynch, Ben</au><au>Joglekar, Alison K. B.</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources</title><date>2024-08-07</date><risdate>2024</risdate><abstract>The era of “Big Data in Agriculture” is rapidly moving well beyond genomics data to encompass environmental, management and socio-economic data sourced from satellites, unmanned aerial vehicles (UAV), stationary and robot-enabled ground-based sensors, and ever more data-enabled agri-food machinery (Kamilaris et al. 2017; Shekhar et al. 2017). Leveraging high-performance computing (HPC) assets into the agri-food domain space is key to realizing a big data revolution in agriculture (EU 2018; Georgiou et al. 2020). However, there is a dearth of scientists with expertise in the agri-food and natural resource domains that have compute-to-scale capabilities enabled by HPC environments. Low adoption of HPC capabilities among agri-food researchers can be largely attributed to the real (or perceived) complexity of using HPC. The goal of this work is to onboard and upskill the agri-food workforce so they can effectively and efficiently tap the analytical horsepower of cyberinfrastructure (CI), specifically HPC, via the creation of a tiered multi-module learning curriculum tailored to CI-applications in the agri-food sciences.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.26510716</doi><orcidid>https://orcid.org/0000-0002-4955-3218</orcidid><orcidid>https://orcid.org/0000-0001-7310-2022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.26510716
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_26510716
source DataCite
subjects Applications in social sciences and education
Other agricultural, veterinary and food sciences not elsewhere classified
Spatial data and applications
title Cyber Training: Pilot -- Breaking the Compute Barrier, Upskilling Agri-Food Researchers to Utilize HPC Resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Silverstein,%20Kevin&rft.date=2024-08-07&rft_id=info:doi/10.6084/m9.figshare.26510716&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_26510716%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true