Apple tree images for trunk detection experiments (YOLOv8 format)
This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure rob...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cejnek, Matouš Vrba, Jan Jura, Jakub Trnka, Pavel |
description | This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images. |
doi_str_mv | 10.6084/m9.figshare.24849711 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_24849711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_24849711</sourcerecordid><originalsourceid>FETCH-LOGICAL-d911-27c212cc5cb53ca753c0402f1797997127b088ecddc54b7edc6eb2dabdba8a513</originalsourceid><addsrcrecordid>eNo1jz1rwzAYhLV0KGn_QQeNzWBXkuVIGk3oFxi8ZMkkXkmvU5PIMbJa2n9fhzbLHQfHcQ8hD5yVG6blUzRlPxzmD0hYCqmlUZzfkqaZphPSnBDpEOGAM-3Pacmf45EGzOjzcB4pfk-Yhohjnunjvmu7L33pRcjrO3LTw2nG-39fkd3L8277VrTd6_u2aYtgOC-E8oIL72vv6sqDWoRJJnqujDLLFaEc0xp9CL6WTmHwG3QigAsONNS8WhH5Nxsggx8y2mk5BOnHcmYvgDYaewW0V8DqF4XQTO4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><source>DataCite</source><creator>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</creator><creatorcontrib>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</creatorcontrib><description>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</description><identifier>DOI: 10.6084/m9.figshare.24849711</identifier><language>eng</language><publisher>figshare</publisher><subject>Agricultural engineering ; Computer vision ; Deep learning</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3538-7124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.24849711$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cejnek, Matouš</creatorcontrib><creatorcontrib>Vrba, Jan</creatorcontrib><creatorcontrib>Jura, Jakub</creatorcontrib><creatorcontrib>Trnka, Pavel</creatorcontrib><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><description>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</description><subject>Agricultural engineering</subject><subject>Computer vision</subject><subject>Deep learning</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1jz1rwzAYhLV0KGn_QQeNzWBXkuVIGk3oFxi8ZMkkXkmvU5PIMbJa2n9fhzbLHQfHcQ8hD5yVG6blUzRlPxzmD0hYCqmlUZzfkqaZphPSnBDpEOGAM-3Pacmf45EGzOjzcB4pfk-Yhohjnunjvmu7L33pRcjrO3LTw2nG-39fkd3L8277VrTd6_u2aYtgOC-E8oIL72vv6sqDWoRJJnqujDLLFaEc0xp9CL6WTmHwG3QigAsONNS8WhH5Nxsggx8y2mk5BOnHcmYvgDYaewW0V8DqF4XQTO4</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Cejnek, Matouš</creator><creator>Vrba, Jan</creator><creator>Jura, Jakub</creator><creator>Trnka, Pavel</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3538-7124</orcidid></search><sort><creationdate>20231218</creationdate><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><author>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d911-27c212cc5cb53ca753c0402f1797997127b088ecddc54b7edc6eb2dabdba8a513</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural engineering</topic><topic>Computer vision</topic><topic>Deep learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cejnek, Matouš</creatorcontrib><creatorcontrib>Vrba, Jan</creatorcontrib><creatorcontrib>Jura, Jakub</creatorcontrib><creatorcontrib>Trnka, Pavel</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cejnek, Matouš</au><au>Vrba, Jan</au><au>Jura, Jakub</au><au>Trnka, Pavel</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><date>2023-12-18</date><risdate>2023</risdate><abstract>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.24849711</doi><orcidid>https://orcid.org/0000-0002-3538-7124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.24849711 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_24849711 |
source | DataCite |
subjects | Agricultural engineering Computer vision Deep learning |
title | Apple tree images for trunk detection experiments (YOLOv8 format) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Cejnek,%20Matou%C5%A1&rft.date=2023-12-18&rft_id=info:doi/10.6084/m9.figshare.24849711&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_24849711%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |