Apple tree images for trunk detection experiments (YOLOv8 format)

This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure rob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cejnek, Matouš, Vrba, Jan, Jura, Jakub, Trnka, Pavel
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cejnek, Matouš
Vrba, Jan
Jura, Jakub
Trnka, Pavel
description This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.
doi_str_mv 10.6084/m9.figshare.24849711
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_24849711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_24849711</sourcerecordid><originalsourceid>FETCH-LOGICAL-d911-27c212cc5cb53ca753c0402f1797997127b088ecddc54b7edc6eb2dabdba8a513</originalsourceid><addsrcrecordid>eNo1jz1rwzAYhLV0KGn_QQeNzWBXkuVIGk3oFxi8ZMkkXkmvU5PIMbJa2n9fhzbLHQfHcQ8hD5yVG6blUzRlPxzmD0hYCqmlUZzfkqaZphPSnBDpEOGAM-3Pacmf45EGzOjzcB4pfk-Yhohjnunjvmu7L33pRcjrO3LTw2nG-39fkd3L8277VrTd6_u2aYtgOC-E8oIL72vv6sqDWoRJJnqujDLLFaEc0xp9CL6WTmHwG3QigAsONNS8WhH5Nxsggx8y2mk5BOnHcmYvgDYaewW0V8DqF4XQTO4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><source>DataCite</source><creator>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</creator><creatorcontrib>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</creatorcontrib><description>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</description><identifier>DOI: 10.6084/m9.figshare.24849711</identifier><language>eng</language><publisher>figshare</publisher><subject>Agricultural engineering ; Computer vision ; Deep learning</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3538-7124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.24849711$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cejnek, Matouš</creatorcontrib><creatorcontrib>Vrba, Jan</creatorcontrib><creatorcontrib>Jura, Jakub</creatorcontrib><creatorcontrib>Trnka, Pavel</creatorcontrib><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><description>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</description><subject>Agricultural engineering</subject><subject>Computer vision</subject><subject>Deep learning</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1jz1rwzAYhLV0KGn_QQeNzWBXkuVIGk3oFxi8ZMkkXkmvU5PIMbJa2n9fhzbLHQfHcQ8hD5yVG6blUzRlPxzmD0hYCqmlUZzfkqaZphPSnBDpEOGAM-3Pacmf45EGzOjzcB4pfk-Yhohjnunjvmu7L33pRcjrO3LTw2nG-39fkd3L8277VrTd6_u2aYtgOC-E8oIL72vv6sqDWoRJJnqujDLLFaEc0xp9CL6WTmHwG3QigAsONNS8WhH5Nxsggx8y2mk5BOnHcmYvgDYaewW0V8DqF4XQTO4</recordid><startdate>20231218</startdate><enddate>20231218</enddate><creator>Cejnek, Matouš</creator><creator>Vrba, Jan</creator><creator>Jura, Jakub</creator><creator>Trnka, Pavel</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3538-7124</orcidid></search><sort><creationdate>20231218</creationdate><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><author>Cejnek, Matouš ; Vrba, Jan ; Jura, Jakub ; Trnka, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d911-27c212cc5cb53ca753c0402f1797997127b088ecddc54b7edc6eb2dabdba8a513</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural engineering</topic><topic>Computer vision</topic><topic>Deep learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cejnek, Matouš</creatorcontrib><creatorcontrib>Vrba, Jan</creatorcontrib><creatorcontrib>Jura, Jakub</creatorcontrib><creatorcontrib>Trnka, Pavel</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cejnek, Matouš</au><au>Vrba, Jan</au><au>Jura, Jakub</au><au>Trnka, Pavel</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Apple tree images for trunk detection experiments (YOLOv8 format)</title><date>2023-12-18</date><risdate>2023</risdate><abstract>This dataset is designed for tree trunk detection in orchard environments using the YOLOv8 format. The dataset focuses apple trees, providing a comprehensive collection of images captured in orchards. The images cover various lighting conditions, weather scenarios, and seasonal changes to ensure robust model performance.The dataset consists of 1580 training images and 176 validation images.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.24849711</doi><orcidid>https://orcid.org/0000-0002-3538-7124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.24849711
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_24849711
source DataCite
subjects Agricultural engineering
Computer vision
Deep learning
title Apple tree images for trunk detection experiments (YOLOv8 format)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Cejnek,%20Matou%C5%A1&rft.date=2023-12-18&rft_id=info:doi/10.6084/m9.figshare.24849711&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_24849711%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true