Suppl_Video_Generalist_Stg32_Galr2Alexa546_Tpm3Alexa647_DAPI_63x_4.mp4 from Jaw size variation is associated with a novel craniofacial function for galanin receptor 2 in an adaptive radiation of pupfishes

Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Palominos, M. Fernanda, Muhl, Vanessa, Richards, Emilie J., Miller, Craig T., Martin, Christopher H.
Format: Video
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the genetic basis of novel adaptations in new species is a fundamental question in biology. Here we demonstrate a new role for galr2 in vertebrate craniofacial development using an adaptive radiation of trophic specialist pupfishes endemic to San Salvador Island, Bahamas. We confirmed the loss of a putative Sry transcription factor binding site upstream of galr2 in scale-eating pupfish and found significant spatial differences in galr2 expression among pupfish species in Meckel's cartilage using in situ hybridization chain reaction (HCR). We then experimentally demonstrated a novel function for Galr2 in craniofacial development by exposing embryos to Garl2-inhibiting drugs. Galr2-inhibition reduced Meckel's cartilage length and increased chondrocyte density in both trophic specialists but not in the generalist genetic background. We propose a mechanism for jaw elongation in scale-eaters based on reduced expression of galr2 due to the loss of a putative Sry binding site. Fewer Galr2 receptors in the scale-eater Meckel's cartilage may result in their enlarged jaw lengths as adults by limiting opportunities for a postulated Galr2 agonist to bind to these receptors during development. Our findings illustrate the growing utility of linking candidate adaptive SNPs in non-model systems with highly divergent phenotypes to novel vertebrate gene functions.
DOI:10.6084/m9.figshare.24453934