Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo

Fully automatic cardiac segmentation can bea fast and reproducible method to extract clinical measure-ments from an echocardiography examination. The U-Netarchitecture is the current state-of-the-art deep learningarchitecture for medical segmentation and can segmentcardiac structures in real-time wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Van De Vyver, Gilles
Format: Video
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Van De Vyver, Gilles
description Fully automatic cardiac segmentation can bea fast and reproducible method to extract clinical measure-ments from an echocardiography examination. The U-Netarchitecture is the current state-of-the-art deep learningarchitecture for medical segmentation and can segmentcardiac structures in real-time with average errors compa-rable to inter-observer variability. However, this architecturestill generates large outliers that are often anatomicallyincorrect. This work uses the concept of graph convolu-tional neural networks that predict the contour points ofthe structures of interest instead of labeling each pixel.We propose a graph architecture that uses two convolu-tional rings based on cardiac anatomy and show that thiseliminates anatomical incorrect multi-structure segmenta-tions on the publicly available CAMUS dataset. Additionally,this work contributes with an ablation study on the graphconvolutional architecture and an evaluation of clinicalmeasurements on the clinical HUNT4 dataset. Finally, wepropose to use the inter-model agreement of the U-Net andthe graph network as a predictor of both the input andsegmentation quality. We show this predictor can detectout-of-distribution and unsuitable input images in real-time.Source code is available online: https://github.com/gillesvntnu/GCN_multistructure
doi_str_mv 10.6084/m9.figshare.24230194
format Video
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_24230194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_24230194</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_242301943</originalsourceid><addsrcrecordid>eNqdjksOgjAURTtxYNQdOHgbAPk0RsbEz8iBkjhsnvCARkpJWyTuXkhkA45uzk1OchjbhoG_Dw58pxK_lJWt0ZAf8SgOwoQv2SPTA5rCwk0_e-sgHUFiDneqFLUOndQt9Fa2FZwNdjWkun3rpp9-bOBKbtDmZcEDQyM7qQgKUnrNFiU2lja_XTF-OmbpxSvQYS4dic5IheYjwkBMfUIlYu4Tc1_8p_YFIIlPCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>video</recordtype></control><display><type>video</type><title>Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo</title><source>DataCite</source><creator>Van De Vyver, Gilles</creator><creatorcontrib>Van De Vyver, Gilles</creatorcontrib><description>Fully automatic cardiac segmentation can bea fast and reproducible method to extract clinical measure-ments from an echocardiography examination. The U-Netarchitecture is the current state-of-the-art deep learningarchitecture for medical segmentation and can segmentcardiac structures in real-time with average errors compa-rable to inter-observer variability. However, this architecturestill generates large outliers that are often anatomicallyincorrect. This work uses the concept of graph convolu-tional neural networks that predict the contour points ofthe structures of interest instead of labeling each pixel.We propose a graph architecture that uses two convolu-tional rings based on cardiac anatomy and show that thiseliminates anatomical incorrect multi-structure segmenta-tions on the publicly available CAMUS dataset. Additionally,this work contributes with an ablation study on the graphconvolutional architecture and an evaluation of clinicalmeasurements on the clinical HUNT4 dataset. Finally, wepropose to use the inter-model agreement of the U-Net andthe graph network as a predictor of both the input andsegmentation quality. We show this predictor can detectout-of-distribution and unsuitable input images in real-time.Source code is available online: https://github.com/gillesvntnu/GCN_multistructure</description><identifier>DOI: 10.6084/m9.figshare.24230194</identifier><language>eng</language><publisher>figshare</publisher><subject>Artificial intelligence not elsewhere classified</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.24230194$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Van De Vyver, Gilles</creatorcontrib><title>Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo</title><description>Fully automatic cardiac segmentation can bea fast and reproducible method to extract clinical measure-ments from an echocardiography examination. The U-Netarchitecture is the current state-of-the-art deep learningarchitecture for medical segmentation and can segmentcardiac structures in real-time with average errors compa-rable to inter-observer variability. However, this architecturestill generates large outliers that are often anatomicallyincorrect. This work uses the concept of graph convolu-tional neural networks that predict the contour points ofthe structures of interest instead of labeling each pixel.We propose a graph architecture that uses two convolu-tional rings based on cardiac anatomy and show that thiseliminates anatomical incorrect multi-structure segmenta-tions on the publicly available CAMUS dataset. Additionally,this work contributes with an ablation study on the graphconvolutional architecture and an evaluation of clinicalmeasurements on the clinical HUNT4 dataset. Finally, wepropose to use the inter-model agreement of the U-Net andthe graph network as a predictor of both the input andsegmentation quality. We show this predictor can detectout-of-distribution and unsuitable input images in real-time.Source code is available online: https://github.com/gillesvntnu/GCN_multistructure</description><subject>Artificial intelligence not elsewhere classified</subject><fulltext>true</fulltext><rsrctype>video</rsrctype><creationdate>2023</creationdate><recordtype>video</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjksOgjAURTtxYNQdOHgbAPk0RsbEz8iBkjhsnvCARkpJWyTuXkhkA45uzk1OchjbhoG_Dw58pxK_lJWt0ZAf8SgOwoQv2SPTA5rCwk0_e-sgHUFiDneqFLUOndQt9Fa2FZwNdjWkun3rpp9-bOBKbtDmZcEDQyM7qQgKUnrNFiU2lja_XTF-OmbpxSvQYS4dic5IheYjwkBMfUIlYu4Tc1_8p_YFIIlPCw</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Van De Vyver, Gilles</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20231002</creationdate><title>Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo</title><author>Van De Vyver, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_242301943</frbrgroupid><rsrctype>videos</rsrctype><prefilter>videos</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence not elsewhere classified</topic><toplevel>online_resources</toplevel><creatorcontrib>Van De Vyver, Gilles</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van De Vyver, Gilles</au><genre>unknown</genre><ristype>VIDEO</ristype><title>Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo</title><date>2023-10-02</date><risdate>2023</risdate><abstract>Fully automatic cardiac segmentation can bea fast and reproducible method to extract clinical measure-ments from an echocardiography examination. The U-Netarchitecture is the current state-of-the-art deep learningarchitecture for medical segmentation and can segmentcardiac structures in real-time with average errors compa-rable to inter-observer variability. However, this architecturestill generates large outliers that are often anatomicallyincorrect. This work uses the concept of graph convolu-tional neural networks that predict the contour points ofthe structures of interest instead of labeling each pixel.We propose a graph architecture that uses two convolu-tional rings based on cardiac anatomy and show that thiseliminates anatomical incorrect multi-structure segmenta-tions on the publicly available CAMUS dataset. Additionally,this work contributes with an ablation study on the graphconvolutional architecture and an evaluation of clinicalmeasurements on the clinical HUNT4 dataset. Finally, wepropose to use the inter-model agreement of the U-Net andthe graph network as a predictor of both the input andsegmentation quality. We show this predictor can detectout-of-distribution and unsuitable input images in real-time.Source code is available online: https://github.com/gillesvntnu/GCN_multistructure</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.24230194</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.24230194
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_24230194
source DataCite
subjects Artificial intelligence not elsewhere classified
title Towards Robust Cardiac Segmentation using Graph Convolutional Networks - real time demo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:&rft.genre=unknown&rft.au=Van%20De%20Vyver,%20Gilles&rft.date=2023-10-02&rft_id=info:doi/10.6084/m9.figshare.24230194&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_24230194%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true