Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows

Additional file 2: Table S1. The differential rumen bacteria between type1 and type2. Table S2. The evaluation of network established by all samples. Table S3. The evaluation of network established by type1. Table S4. The evaluation of network established by type2. Table S5. The differential rumen m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Chenguang, Wang, Mengya, Liu, Huifeng, Jiang, Xingwei, Chen, Xiaodong, Liu, Tao, Yin, Qingyan, Wang, Yue, Deng, Lu, Yao, Junhu, Wu, Shengru
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhang, Chenguang
Wang, Mengya
Liu, Huifeng
Jiang, Xingwei
Chen, Xiaodong
Liu, Tao
Yin, Qingyan
Wang, Yue
Deng, Lu
Yao, Junhu
Wu, Shengru
description Additional file 2: Table S1. The differential rumen bacteria between type1 and type2. Table S2. The evaluation of network established by all samples. Table S3. The evaluation of network established by type1. Table S4. The evaluation of network established by type2. Table S5. The differential rumen metabolites between type1 and type2. Table S6. The enriched KEGG pathways of differential rumen metabolites between type1 and type2. Table S7. The differential serum metabolites between type1 and type2. Table S8. The enriched KEGG pathways of serum rumen metabolites between type1 and type2. Table S9. The differential milk metabolites between type1 and type2. Table S10. The enriched KEGG pathways of milk rumen metabolites between type1 and type2. Table S11. The bacteria of 5 modules of rumen microbiome based on WGCNA. Table S12. The bacteria of 10 modules of rumen metabolome based on WGCNA. Table S13. The bacteria of 5 modules of serum metabolome based on WGCNA. Table S14. The bacteria of 7 modules of milk metabolome based on WGCNA. Table S15. The expression level of all modules based on WGCNA of rumen microbiome and metabolome, serum metabolome, and milk metabolome. Table S16. The evaluation of network established by micro1. Table S17. The ASVs sequence of norank_f_Ruminococcaceae in this study.
doi_str_mv 10.6084/m9.figshare.22790578
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_22790578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_22790578</sourcerecordid><originalsourceid>FETCH-LOGICAL-d918-7e1068e721f8695b20e13930d744dee17173d827b5bd37c1e1c50036b70781d83</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhbNhgQo3YOELpNhxEjvLquJPKmLTfWTHk2aEHVe2C8rNOB5uoZsZzXvS90avKB4YXbdU1o-uW494iJMKsK4q0dFGyNviZ2MMJvSzsmREC6QifiTvJ5uw9A6HSAJ8gbKRpEmlPIBMPqYyW8Fr9A6Ig6S0txgdyVqMSdnPM8TgOEKAOWFmh5ODmWg1JAjnO8sQfFqOEMmg5pxyOFmV4JLgMBOO2QacSVzmrEWMF6bCsJDBf8e74mbMb8H9_14V--en_fa13H28vG03u9J0TJYCGG0liIqNsu0aXVFgvOPUiLo2AEwwwY2shG604WJgwIaGUt5qQYVkRvJVUf9hjUpqwAT9MaBTYekZ7c-99q7rr7321175LxHBeR4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows</title><source>DataCite</source><creator>Zhang, Chenguang ; Wang, Mengya ; Liu, Huifeng ; Jiang, Xingwei ; Chen, Xiaodong ; Liu, Tao ; Yin, Qingyan ; Wang, Yue ; Deng, Lu ; Yao, Junhu ; Wu, Shengru</creator><creatorcontrib>Zhang, Chenguang ; Wang, Mengya ; Liu, Huifeng ; Jiang, Xingwei ; Chen, Xiaodong ; Liu, Tao ; Yin, Qingyan ; Wang, Yue ; Deng, Lu ; Yao, Junhu ; Wu, Shengru</creatorcontrib><description>Additional file 2: Table S1. The differential rumen bacteria between type1 and type2. Table S2. The evaluation of network established by all samples. Table S3. The evaluation of network established by type1. Table S4. The evaluation of network established by type2. Table S5. The differential rumen metabolites between type1 and type2. Table S6. The enriched KEGG pathways of differential rumen metabolites between type1 and type2. Table S7. The differential serum metabolites between type1 and type2. Table S8. The enriched KEGG pathways of serum rumen metabolites between type1 and type2. Table S9. The differential milk metabolites between type1 and type2. Table S10. The enriched KEGG pathways of milk rumen metabolites between type1 and type2. Table S11. The bacteria of 5 modules of rumen microbiome based on WGCNA. Table S12. The bacteria of 10 modules of rumen metabolome based on WGCNA. Table S13. The bacteria of 5 modules of serum metabolome based on WGCNA. Table S14. The bacteria of 7 modules of milk metabolome based on WGCNA. Table S15. The expression level of all modules based on WGCNA of rumen microbiome and metabolome, serum metabolome, and milk metabolome. Table S16. The evaluation of network established by micro1. Table S17. The ASVs sequence of norank_f_Ruminococcaceae in this study.</description><identifier>DOI: 10.6084/m9.figshare.22790578</identifier><language>eng</language><publisher>figshare</publisher><subject>FOS: Biological sciences ; Microbiology</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1046-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.22790578$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhang, Chenguang</creatorcontrib><creatorcontrib>Wang, Mengya</creatorcontrib><creatorcontrib>Liu, Huifeng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Yin, Qingyan</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Deng, Lu</creatorcontrib><creatorcontrib>Yao, Junhu</creatorcontrib><creatorcontrib>Wu, Shengru</creatorcontrib><title>Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows</title><description>Additional file 2: Table S1. The differential rumen bacteria between type1 and type2. Table S2. The evaluation of network established by all samples. Table S3. The evaluation of network established by type1. Table S4. The evaluation of network established by type2. Table S5. The differential rumen metabolites between type1 and type2. Table S6. The enriched KEGG pathways of differential rumen metabolites between type1 and type2. Table S7. The differential serum metabolites between type1 and type2. Table S8. The enriched KEGG pathways of serum rumen metabolites between type1 and type2. Table S9. The differential milk metabolites between type1 and type2. Table S10. The enriched KEGG pathways of milk rumen metabolites between type1 and type2. Table S11. The bacteria of 5 modules of rumen microbiome based on WGCNA. Table S12. The bacteria of 10 modules of rumen metabolome based on WGCNA. Table S13. The bacteria of 5 modules of serum metabolome based on WGCNA. Table S14. The bacteria of 7 modules of milk metabolome based on WGCNA. Table S15. The expression level of all modules based on WGCNA of rumen microbiome and metabolome, serum metabolome, and milk metabolome. Table S16. The evaluation of network established by micro1. Table S17. The ASVs sequence of norank_f_Ruminococcaceae in this study.</description><subject>FOS: Biological sciences</subject><subject>Microbiology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kE1OwzAQhbNhgQo3YOELpNhxEjvLquJPKmLTfWTHk2aEHVe2C8rNOB5uoZsZzXvS90avKB4YXbdU1o-uW494iJMKsK4q0dFGyNviZ2MMJvSzsmREC6QifiTvJ5uw9A6HSAJ8gbKRpEmlPIBMPqYyW8Fr9A6Ig6S0txgdyVqMSdnPM8TgOEKAOWFmh5ODmWg1JAjnO8sQfFqOEMmg5pxyOFmV4JLgMBOO2QacSVzmrEWMF6bCsJDBf8e74mbMb8H9_14V--en_fa13H28vG03u9J0TJYCGG0liIqNsu0aXVFgvOPUiLo2AEwwwY2shG604WJgwIaGUt5qQYVkRvJVUf9hjUpqwAT9MaBTYekZ7c-99q7rr7321175LxHBeR4</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Zhang, Chenguang</creator><creator>Wang, Mengya</creator><creator>Liu, Huifeng</creator><creator>Jiang, Xingwei</creator><creator>Chen, Xiaodong</creator><creator>Liu, Tao</creator><creator>Yin, Qingyan</creator><creator>Wang, Yue</creator><creator>Deng, Lu</creator><creator>Yao, Junhu</creator><creator>Wu, Shengru</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-1046-3477</orcidid></search><sort><creationdate>20230509</creationdate><title>Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows</title><author>Zhang, Chenguang ; Wang, Mengya ; Liu, Huifeng ; Jiang, Xingwei ; Chen, Xiaodong ; Liu, Tao ; Yin, Qingyan ; Wang, Yue ; Deng, Lu ; Yao, Junhu ; Wu, Shengru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d918-7e1068e721f8695b20e13930d744dee17173d827b5bd37c1e1c50036b70781d83</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>FOS: Biological sciences</topic><topic>Microbiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chenguang</creatorcontrib><creatorcontrib>Wang, Mengya</creatorcontrib><creatorcontrib>Liu, Huifeng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Yin, Qingyan</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Deng, Lu</creatorcontrib><creatorcontrib>Yao, Junhu</creatorcontrib><creatorcontrib>Wu, Shengru</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chenguang</au><au>Wang, Mengya</au><au>Liu, Huifeng</au><au>Jiang, Xingwei</au><au>Chen, Xiaodong</au><au>Liu, Tao</au><au>Yin, Qingyan</au><au>Wang, Yue</au><au>Deng, Lu</au><au>Yao, Junhu</au><au>Wu, Shengru</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows</title><date>2023-05-09</date><risdate>2023</risdate><abstract>Additional file 2: Table S1. The differential rumen bacteria between type1 and type2. Table S2. The evaluation of network established by all samples. Table S3. The evaluation of network established by type1. Table S4. The evaluation of network established by type2. Table S5. The differential rumen metabolites between type1 and type2. Table S6. The enriched KEGG pathways of differential rumen metabolites between type1 and type2. Table S7. The differential serum metabolites between type1 and type2. Table S8. The enriched KEGG pathways of serum rumen metabolites between type1 and type2. Table S9. The differential milk metabolites between type1 and type2. Table S10. The enriched KEGG pathways of milk rumen metabolites between type1 and type2. Table S11. The bacteria of 5 modules of rumen microbiome based on WGCNA. Table S12. The bacteria of 10 modules of rumen metabolome based on WGCNA. Table S13. The bacteria of 5 modules of serum metabolome based on WGCNA. Table S14. The bacteria of 7 modules of milk metabolome based on WGCNA. Table S15. The expression level of all modules based on WGCNA of rumen microbiome and metabolome, serum metabolome, and milk metabolome. Table S16. The evaluation of network established by micro1. Table S17. The ASVs sequence of norank_f_Ruminococcaceae in this study.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.22790578</doi><orcidid>https://orcid.org/0000-0002-1046-3477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.22790578
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_22790578
source DataCite
subjects FOS: Biological sciences
Microbiology
title Additional file 2 of Multi-omics reveals that the host-microbiome metabolism crosstalk of differential rumen bacterial enterotypes can regulate the milk protein synthesis of dairy cows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Zhang,%20Chenguang&rft.date=2023-05-09&rft_id=info:doi/10.6084/m9.figshare.22790578&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_22790578%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true