Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence

Strasberg's criteria to detect a critical view of safety is a widely known strategy to reduce bile duct injuries during laparoscopic cholecystectomy. In spite of its popularity and efficiency, recent studies have shown that human miss-identification errors have led to important bile duct injuri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ríos, Manuel Sebastián, Guillén, Camilo Andrés, Giraldo, Luis Felipe, Molina, María Alejandra, Londono, Daniella, Zapata, Sebastián, Zapata, Felipe
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ríos, Manuel Sebastián
Guillén, Camilo Andrés
Giraldo, Luis Felipe
Molina, María Alejandra
Londono, Daniella
Zapata, Sebastián
Zapata, Felipe
description Strasberg's criteria to detect a critical view of safety is a widely known strategy to reduce bile duct injuries during laparoscopic cholecystectomy. In spite of its popularity and efficiency, recent studies have shown that human miss-identification errors have led to important bile duct injuries occurrence rates. Developing tools based on artificial intelligence that facilitate the identification of a critical view of safety in cholecystectomy surgeries can potentially minimize the risk of such injuries. With this goal in mind, we present Cholec80-CVS, the first open dataset with video annotations of Strasberg's Critical View of Safety (CVS) criteria. Our dataset contains CVS criteria annotations provided by skilled surgeons for all videos in the well-known Cholec80 open video dataset. We consider that Cholec80-CVS is the first step towards the creation of intelligent systems that can assist humans during laparoscopic cholecystectomy.
doi_str_mv 10.6084/m9.figshare.22183885
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_22183885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_22183885</sourcerecordid><originalsourceid>FETCH-LOGICAL-d915-55c89074c2059c74f9596b88a8a4a7863dfb59c934581f50f508b8c6dc171b413</originalsourceid><addsrcrecordid>eNo1kD1rwzAURb10KGn_QQdtnZxKsWQ_dQumH4FAh4Su4ll-sgWOHSQ1If--Dm3gwh0OXLgny54EX5Yc5MtBL53vYo-BlquVgAJA3Wex7qeBLPC8_t69svXIpiONrMWEkRI7-9QzHBmdcPjB5KeZO7ZLAWNDoXuOzAafvMWBnTydrzCio3RhbgpsHZJ33vqZbsZEw-A7Gi09ZHcOh0iP_73I9u9v-_oz3359bOr1Nm-1ULlSFjSvpF1xpW0lnVa6bAAQUGIFZdG6Zga6kAqEU3wONGDL1opKNFIUi0z-zV7PWJ_IHIM_YLgYwc1ViTloc1NibkqKX9KJXWE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence</title><source>DataCite</source><creator>Ríos, Manuel Sebastián ; Guillén, Camilo Andrés ; Giraldo, Luis Felipe ; Molina, María Alejandra ; Londono, Daniella ; Zapata, Sebastián ; Zapata, Felipe</creator><creatorcontrib>Ríos, Manuel Sebastián ; Guillén, Camilo Andrés ; Giraldo, Luis Felipe ; Molina, María Alejandra ; Londono, Daniella ; Zapata, Sebastián ; Zapata, Felipe</creatorcontrib><description>Strasberg's criteria to detect a critical view of safety is a widely known strategy to reduce bile duct injuries during laparoscopic cholecystectomy. In spite of its popularity and efficiency, recent studies have shown that human miss-identification errors have led to important bile duct injuries occurrence rates. Developing tools based on artificial intelligence that facilitate the identification of a critical view of safety in cholecystectomy surgeries can potentially minimize the risk of such injuries. With this goal in mind, we present Cholec80-CVS, the first open dataset with video annotations of Strasberg's Critical View of Safety (CVS) criteria. Our dataset contains CVS criteria annotations provided by skilled surgeons for all videos in the well-known Cholec80 open video dataset. We consider that Cholec80-CVS is the first step towards the creation of intelligent systems that can assist humans during laparoscopic cholecystectomy.</description><identifier>DOI: 10.6084/m9.figshare.22183885</identifier><language>eng</language><publisher>figshare</publisher><subject>Artificial Intelligence and Image Processing ; FOS: Clinical medicine ; FOS: Computer and information sciences ; Surgery</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.22183885$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ríos, Manuel Sebastián</creatorcontrib><creatorcontrib>Guillén, Camilo Andrés</creatorcontrib><creatorcontrib>Giraldo, Luis Felipe</creatorcontrib><creatorcontrib>Molina, María Alejandra</creatorcontrib><creatorcontrib>Londono, Daniella</creatorcontrib><creatorcontrib>Zapata, Sebastián</creatorcontrib><creatorcontrib>Zapata, Felipe</creatorcontrib><title>Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence</title><description>Strasberg's criteria to detect a critical view of safety is a widely known strategy to reduce bile duct injuries during laparoscopic cholecystectomy. In spite of its popularity and efficiency, recent studies have shown that human miss-identification errors have led to important bile duct injuries occurrence rates. Developing tools based on artificial intelligence that facilitate the identification of a critical view of safety in cholecystectomy surgeries can potentially minimize the risk of such injuries. With this goal in mind, we present Cholec80-CVS, the first open dataset with video annotations of Strasberg's Critical View of Safety (CVS) criteria. Our dataset contains CVS criteria annotations provided by skilled surgeons for all videos in the well-known Cholec80 open video dataset. We consider that Cholec80-CVS is the first step towards the creation of intelligent systems that can assist humans during laparoscopic cholecystectomy.</description><subject>Artificial Intelligence and Image Processing</subject><subject>FOS: Clinical medicine</subject><subject>FOS: Computer and information sciences</subject><subject>Surgery</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kD1rwzAURb10KGn_QQdtnZxKsWQ_dQumH4FAh4Su4ll-sgWOHSQ1If--Dm3gwh0OXLgny54EX5Yc5MtBL53vYo-BlquVgAJA3Wex7qeBLPC8_t69svXIpiONrMWEkRI7-9QzHBmdcPjB5KeZO7ZLAWNDoXuOzAafvMWBnTydrzCio3RhbgpsHZJ33vqZbsZEw-A7Gi09ZHcOh0iP_73I9u9v-_oz3359bOr1Nm-1ULlSFjSvpF1xpW0lnVa6bAAQUGIFZdG6Zga6kAqEU3wONGDL1opKNFIUi0z-zV7PWJ_IHIM_YLgYwc1ViTloc1NibkqKX9KJXWE</recordid><startdate>20230405</startdate><enddate>20230405</enddate><creator>Ríos, Manuel Sebastián</creator><creator>Guillén, Camilo Andrés</creator><creator>Giraldo, Luis Felipe</creator><creator>Molina, María Alejandra</creator><creator>Londono, Daniella</creator><creator>Zapata, Sebastián</creator><creator>Zapata, Felipe</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20230405</creationdate><title>Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence</title><author>Ríos, Manuel Sebastián ; Guillén, Camilo Andrés ; Giraldo, Luis Felipe ; Molina, María Alejandra ; Londono, Daniella ; Zapata, Sebastián ; Zapata, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d915-55c89074c2059c74f9596b88a8a4a7863dfb59c934581f50f508b8c6dc171b413</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence and Image Processing</topic><topic>FOS: Clinical medicine</topic><topic>FOS: Computer and information sciences</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Ríos, Manuel Sebastián</creatorcontrib><creatorcontrib>Guillén, Camilo Andrés</creatorcontrib><creatorcontrib>Giraldo, Luis Felipe</creatorcontrib><creatorcontrib>Molina, María Alejandra</creatorcontrib><creatorcontrib>Londono, Daniella</creatorcontrib><creatorcontrib>Zapata, Sebastián</creatorcontrib><creatorcontrib>Zapata, Felipe</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ríos, Manuel Sebastián</au><au>Guillén, Camilo Andrés</au><au>Giraldo, Luis Felipe</au><au>Molina, María Alejandra</au><au>Londono, Daniella</au><au>Zapata, Sebastián</au><au>Zapata, Felipe</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence</title><date>2023-04-05</date><risdate>2023</risdate><abstract>Strasberg's criteria to detect a critical view of safety is a widely known strategy to reduce bile duct injuries during laparoscopic cholecystectomy. In spite of its popularity and efficiency, recent studies have shown that human miss-identification errors have led to important bile duct injuries occurrence rates. Developing tools based on artificial intelligence that facilitate the identification of a critical view of safety in cholecystectomy surgeries can potentially minimize the risk of such injuries. With this goal in mind, we present Cholec80-CVS, the first open dataset with video annotations of Strasberg's Critical View of Safety (CVS) criteria. Our dataset contains CVS criteria annotations provided by skilled surgeons for all videos in the well-known Cholec80 open video dataset. We consider that Cholec80-CVS is the first step towards the creation of intelligent systems that can assist humans during laparoscopic cholecystectomy.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.22183885</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.22183885
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_22183885
source DataCite
subjects Artificial Intelligence and Image Processing
FOS: Clinical medicine
FOS: Computer and information sciences
Surgery
title Cholec80-CVS: An open dataset with an evaluation of Strasberg's critical view of safety for Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=R%C3%ADos,%20Manuel%20Sebasti%C3%A1n&rft.date=2023-04-05&rft_id=info:doi/10.6084/m9.figshare.22183885&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_22183885%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true